Difference between revisions of "Team:UChile-OpenBio/Description"

Line 15: Line 15:
 
                 <ul>
 
                 <ul>
 
                     <li><a href="https://2015.igem.org/Team:UChile-OpenBio">HOME</a></li>
 
                     <li><a href="https://2015.igem.org/Team:UChile-OpenBio">HOME</a></li>
                     <li>
+
                     <li><a href="https://2015.igem.org/Team:UChile-OpenBio/Team">TEAM</a></li>
                        <a href="https://2015.igem.org/Team:UChile-OpenBio/Description">PROJECT</a>
+
                    <li><a href="https://2015.igem.org/Team:UChile-OpenBio/Description">PROJECT</a>
 
                         <ul>
 
                         <ul>
                             <li><a href="https://2015.igem.org/Team:UChile-OpenBio/Description">PROJECT DESCRIPTION</a></li>
+
                             <li><a href="https://2015.igem.org/Team:UChile-OpenBio/Description">Description</a></li>
                             <li><a href="https://2015.igem.org/Team:UChile-OpenBio/Experiments">EXPERIMENT AND PROTOCOLS</a></li>
+
                             <li><a href="https://2015.igem.org/Team:UChile-OpenBio/Experiments">Experiments &amp; Protocols</a></li>
                             <li><a href="https://2015.igem.org/Team:UChile-OpenBio/Results">RESULTS</a></li>
+
                             <li><a href="https://2015.igem.org/Team:UChile-OpenBio/Results">Results</a></li> 
 +
                            <li><a href="https://2015.igem.org/Team:UChile-OpenBio/Design">Design</a></li>
 
                         </ul>
 
                         </ul>
 
                     </li>
 
                     </li>
                     <li><a href="https://2015.igem.org/Team:UChile-OpenBio/Parts">PARTS</a></li>
+
                     <li><a href="https://2015.igem.org/Team:UChile-OpenBio/Experiments">EXPERIMENT</a></li>
                    <li><a href="https://2015.igem.org/Team:UChile-OpenBio/Notebook">NOTEBOOK</a></li>
+
                    <li><a href="https://2015.igem.org/Team:UChile-OpenBio/Collaborations">COLLABORATION</a></li>
+
 
                     <li><a href="https://2015.igem.org/Team:UChile-OpenBio/Practices">HUMAN PRACTICES</a></li>
 
                     <li><a href="https://2015.igem.org/Team:UChile-OpenBio/Practices">HUMAN PRACTICES</a></li>
                    <li><a href="https://2015.igem.org/Team:UChile-OpenBio/Safety">SAFETY</a></li>
 
                    <li><a href="https://2015.igem.org/Team:UChile-OpenBio/Modelling">MODELLING</a></li>
 
                    <li><a href="https://2015.igem.org/Team:UChile-OpenBio/Team">TEAM</a></li>
 
 
                 </ul>
 
                 </ul>
            </nav>
 
 
             </nav>
 
             </nav>
 
         </header>
 
         </header>
Line 42: Line 37:
 
             <section>
 
             <section>
 
                 <span class="titulo_seccion">Project</span>
 
                 <span class="titulo_seccion">Project</span>
                 <img alt="Project overview" src="https://static.igem.org/mediawiki/2015/0/04/Description-overview.png" />
+
                <script>
 +
                            ; (function(a){a.fn.rwdImageMaps = function(){var c = this; var b = function(){c.each(function(){if (typeof (a(this).attr("usemap")) == "undefined"){return}var e = this, d = a(e); a("<img />").load(function(){var g = "width", m = "height", n = d.attr(g), j = d.attr(m); if (!n || !j){var o = new Image(); o.src = d.attr("src"); if (!n){n = o.width}if (!j){j = o.height}}var f = d.width() / 100, k = d.height() / 100, i = d.attr("usemap").replace("#", ""), l = "coords"; a('map[name="' + i + '"]').find("area").each(function(){var r = a(this); if (!r.data(l)){r.data(l, r.attr(l))}var q = r.data(l).split(","), p = new Array(q.length); for (var h = 0; h < p.length; ++h){if (h % 2 === 0){p[h] = parseInt(((q[h] / n) * 100) * f)} else{p[h] = parseInt(((q[h] / j) * 100) * k)}}r.attr(l, p.toString())})}).attr("src", d.attr("src"))})}; a(window).resize(b).trigger("resize"); return this}})(jQuery);
 +
                </script>
 +
                 <img alt="Project overview" src="https://static.igem.org/mediawiki/2015/0/04/Description-overview.png" usemap="#overview" />
 
                 <map name="overview">
 
                 <map name="overview">
 
                     <area shape="circle" coords="120,178,101" alt="Overview" href="#background" />
 
                     <area shape="circle" coords="120,178,101" alt="Overview" href="#background" />
Line 60: Line 58:
 
                     <div class="division">
 
                     <div class="division">
 
                         <div class="half">
 
                         <div class="half">
                             <img id="bacteria_con_capa" class="bottom right" alt="Super bacteria" src="https://static.igem.org/mediawiki/2015/8/83/Description-bacteria_con_capa.png" />
+
                              
 +
<!-------COLUMNA 1-->
 +
 
 
                         </div>
 
                         </div>
 
                         <div class="half last">
 
                         <div class="half last">
                            <p>Each year, 130 million tons of fossil plastics are produced in the world, which take 500-1000 years to degrade, and pollute the environment; 1,5 millions of marine animals were killed in 2014. A sustainable initiative is to produce biodegradable plastics; however its synthesis process (chemical and biological) is complex and expensive.</p>
+
                         
                            <p>The team UChile-OpenBio is designing two populations of Bacteria to achieve this: Escherichia coli to produce a biodegradable plastic called PLA (Polylactic acid) from easy to assimilate renewable resources.</p>
+
<!-------COLUMNA 2-->
                            <p>In this way, the team would help fighting against pollution, contributing to a better world!</p>
+
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
 
                 </article>
 
                 </article>
 +
 +
<!-------LINEA DE SEPARACION-->
 +
 
                 <article>
 
                 <article>
 
                     <div class="division">
 
                     <div class="division">
 
                         <div class="half">
 
                         <div class="half">
                             <h1>General Concepts</h1>
+
                             <h1>Titulo 1</h1>
                            <p>A genetic module is constituted of 4 elements, called parts, that are DNA sequences which possess a specific function: the promotor, the RBS, the coding sequence and the terminator.</p>
+
<!-------COLUMNA 1-->
                            <p>The role of a genetic module is to produce certain quantity of a protein under some specific conditions. The fabrication process, from DNA to protein, consists in two steps: <span class="destacado">transcription</span> and <span class="destacado">translation</span>.</p>
+
<!---<span class="destacado">Central Dogma of Biology</span>.</p>--->
                            <p>If the DNA is a book of recipes, the transcription process consists in photocopying one page, in which are written the instructions for one specific food; and the translation process corresponds to the cooking phase, in which the "cooker" is the ribosome. The ribosome reads the instructions and at the same time builds the protein. This is called the <span class="destacado">Central Dogma of Biology</span>.</p>
+
 
 
                         </div>
 
                         </div>
 
                         <div class="half last">
 
                         <div class="half last">
                            Imagen
+
<!-------COLUMNA 2-->
 +
 
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
 
                 </article>
 
                 </article>
                <article>
+
 
 +
<!-------LINEA DE SEPARACION-->
 +
 
 +
<article>
 
                     <div class="division">
 
                     <div class="division">
 
                         <div class="half">
 
                         <div class="half">
                             <h1>General Concepts</h1>
+
                             <h1>Titulo 2</h1>
                            <p>The transcription can be regulated by different factors (repressors, pH, light, etc) which are detected by the <span class="destacado">promotor</span>. These signals induce or inhibit the activation of the module.</p>
+
<!-------COLUMNA 1-->
                            <p>If the module is activated then the transcription process begins, in which several copies of the message are made.</p>
+
 
                            <p>The <span class="destacado">RBS</span> (Ribosomal Bonding Site) intervenes in the translation process: if it is strong many proteins will be synthesised. If it is weak, few proteins will be synthetized. So the function of RBS is to regulate the quantity of produced proteins.</p>
+
 
                            <p>The <span class="destacado">coding sequence</span> is the message, the recipe that shall be translated to protein.</p>
+
                            <p>The <span class="destacado">terminator</span> is a DNA sequence that puts an end to the transcription process.</p>
+
 
                         </div>
 
                         </div>
 
                         <div class="half last">
 
                         <div class="half last">
                            <img class="" alt="Genetic module and parts in legos" src="https://static.igem.org/mediawiki/2015/f/f2/Description-genetic_module_parts_legos.png" />
+
<!-------COLUMNA 2-->
 +
 
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
 
                 </article>
 
                 </article>
                <article>
+
 
                    <h1>Why Legos are a friendly way to explain SB?</h1>
+
<!-------LINEA DE SEPARACION-->
 +
 
 +
<article>
 
                     <div class="division">
 
                     <div class="division">
 
                         <div class="half">
 
                         <div class="half">
                             <p>The team decided to used legos to explain the pla project due to diferent reasons.</p>
+
                             <h1>Titulo 3</h1>
                        </div>
+
<!-------COLUMNA 1-->
                    </div>
+
 
  
                    <div class="division">
 
                        <div class="one_third">
 
                            <h2>Fisrt Reason</h2>
 
                            <p>They make tangible microscopic things</p>
 
                            imagen
 
 
                         </div>
 
                         </div>
                         <div class="one_third">
+
                         <div class="half last">
                            <h2>Second Reason</h2>
+
<!-------COLUMNA 2-->
                            <p>They allow a strong analogy with the DNA parts called « bio-bricks»</p>
+
 
                            <p>They are standard and modular like a biobricks</p>
+
                            imagen
+
                        </div>
+
                        <div class="one_third last">
+
                            <h2>Third Reason</h2>
+
                            <p>Finally, they are a funny way to explain complex concepts... for the students...and the teachers!</p>
+
                            imagen
+
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
 
                 </article>
 
                 </article>
            </section>
+
 
            <section id="lego_description">
+
<!-------LINEA DE SEPARACION-->
                <span class="titulo_seccion">Overview: Lego description</span>
+
             
 +
 
 +
 
 +
<!---MANERA DE DIVIDIR EN 3COLUMNAS
 
                 <article>
 
                 <article>
 
                     <div class="division">
 
                     <div class="division">
 
                         <div class="half">
 
                         <div class="half">
                             <h3>E. Coli 1 Poblation: “Lactadora”</h3>
+
                              
                            <img class="" alt="Lactadora" src="https://static.igem.org/mediawiki/2015/0/0b/Lego_description-bacteria_lego.png" />
+
                            <p>In our project we used two bacterias « Escherichia coli »: name and first name of the bacteria.<br>This population are responsible for lactate production.</p>
+
                        </div>
+
                        <div class="half last">
+
                            <h3>E. Coli 2 Poblation: “PLAdora”</h3>
+
                            <img class="" alt="PLAdora" src="https://static.igem.org/mediawiki/2015/0/0b/Lego_description-bacteria_lego.png" />
+
                            <p>« Escherichia coli »: name and first name of the bacteria. « 1 » y « 2 » only mean that these bacteria, in this process, are responsible for different functions (but they belong the same bacteria strain).<br>This population are responsible for process the lactate into PLA.</p>
+
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
                </article>
+
 
                <article>
+
 
                     <div class="division">
 
                     <div class="division">
                        <div class="two_third">
 
                            <img class="" alt="LDH" src="https://static.igem.org/mediawiki/2015/7/7f/Lego_description-LDH.png" />
 
                        </div>
 
                        <div class="one_third last">
 
                            The « Lactate DeHydrogenase » (LDH) is responsible for lactate production.
 
                        </div>
 
                    </div>
 
                    <img class="" alt="Scheme" src="https://static.igem.org/mediawiki/2015/6/64/Lego_description-esquema.png" />
 
                    <div id="esquema_descripcion" class="division">
 
 
                         <div class="one_third">
 
                         <div class="one_third">
                             <p>Transformation of glucose into pyruvate is a bacterial natural process, it doesn’t need human intervention.</p>
+
                              
 
                         </div>
 
                         </div>
 
                         <div class="one_third">
 
                         <div class="one_third">
                            <p>LDH uses pyruvate and transforms it into lactate, the intermediate compound that allows PLA synthesis.</p>
+
                         
 
                         </div>
 
                         </div>
 
                         <div class="one_third last">
 
                         <div class="one_third last">
                             <p>Finally, lactate can be obtained from glucose thanks to LDH, which gene we insert into the bacteria.</p>
+
                              
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
                 </article>
+
                 </article>  
 +
-------->
 +
 
 +
 
 +
            </section>
 +
 
 +
<!-----SECTION 2-->
 +
 
 +
            <section id="lego_description">
 +
                <span class="titulo_seccion">Project: Description</span>
 +
               
 
                 <article>
 
                 <article>
 +
                            <h1>Lactadora: Lactate production and pH regulation system</h1> <!--CENTRAR titulo y parrafo-->
 +
                    <p>Develop a system that can produces lactate and regulates its concentration. Also, a homoserine lactone molecule would be produce at the same time to activate the second system (PLA production and exportation) by quorum sensing.</p>
 +
 
                     <div class="division">
 
                     <div class="division">
                         <div class="two_third">
+
                         <div class="half">
                             <img class="" alt="Lactate" src="https://static.igem.org/mediawiki/2015/9/90/Lego_description-lactate.png" />
+
                             <h3>What parts did we use? And why?</h3><br>
 +
<!-------COLUMNA 1-->
 +
                        <div class="division">
 +
                                <div class="half">
 +
                    <!-------COLUMNA 1-->
 +
                    <img id="Esquema" class="middle top" alt="Super bacteria" src="https://static.igem.org/mediawiki/2015/5/53/Uchile-openbio_esquema.png" />
 +
                                </div>
 +
                                <div class="half last">
 +
                    <!-------COLUMNA 2-->
 +
                    <img id="Click1" class="middle top" alt="Click" src="https://static.igem.org/mediawiki/2015/8/86/UChile-Openbio-DES_clikc1_pag1.png" />
 +
                                </div>
 
                         </div>
 
                         </div>
                        <div class="one_third last">
+
 
                             According to last image, the module which produces LDH is indirectly responsible for lactate production, for it will be symbolized as if the LDH directly produced lactate.
+
                             <h3>What modules did we assembly?</h3><br>
                        </div>
+
                     <img id="Esquema" class="middle top" alt="Modules" src="https://static.igem.org/mediawiki/2015/d/d1/UChile-Openbio-DES_Botones_modulos_pag1.png" />
                    </div>
+
 
                     <img class="" alt="Lactate" src="https://static.igem.org/mediawiki/2015/b/b6/Lego_description-lactate_populations.png" />
+
                    <div class="division">
+
                        <div class="half">
+
                            <p>The lactate produced by the <span class="destacado">E.coli 1 Population</span> is secreted into the medium and enters in the bacterias of the E.coli 2 Population</p>
+
 
                         </div>
 
                         </div>
 
                         <div class="half last">
 
                         <div class="half last">
                            <p>Lactate enters into the <span class="destacado">E.coli 2 Population</span> to be processed into PLA by the presented module.</p>
+
<!-------COLUMNA 2-->
 +
                   
 +
<!----pendiente: hacer que se aparezca un desplegable cuando clikeo en el boton azul--->
 +
 
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
 
                 </article>
 
                 </article>
 +
 +
<!-------LINEA DE SEPARACION-->
 +
               
 
                 <article>
 
                 <article>
                    <div class="division">
 
                        <div class="two_third">
 
                            <img class="" alt="PhaC" src="https://static.igem.org/mediawiki/2015/3/3f/Lego_description-phac.png" />
 
                        </div>
 
                        <div class="one_third last">
 
                            The lactate convertion into PLA is driven by two enzymes: « P-CoA-T »: Propionyl-CoA-Transferase « phaC1 »: PolyHydroxy Alkanoate –Class 1
 
                        </div>
 
                    </div>
 
                    <img class="" alt="PLA" src="https://static.igem.org/mediawiki/2015/0/0d/Lego_description-lactato_pla.png" />
 
                    <div id="esquema_descripcion" class="division">
 
                        <div class="one_third">
 
                            <p>The P-CoA-T unites lactate with a cofactor called « Coenzyme A », transforming lactate into « Lactyl-CoA ».</p>
 
                        </div>
 
                        <div class="one_third">
 
                            <p>PhaC1 gathers all the lactyl-CoA that are present in the cell and unites them together...</p>
 
                        </div>
 
                        <div class="one_third last">
 
                            <p>This reaction is called « polymerization ». The product of this polymerization is the PLA.</p>
 
                        </div>
 
                    </div>
 
                </article>
 
                <article>
 
                    <img class="" alt="Lactate to PLA" src="https://static.igem.org/mediawiki/2015/3/38/Lego_description-sumpup_lactate_to_pla.png" />
 
 
                     <div class="division">
 
                     <div class="division">
 
                         <div class="half">
 
                         <div class="half">
                             <p>To sum up, this module processes lactate to transform it into PLA.</p>
+
                             <h1>How our Lactadora system does work?</h1>
 +
<!-------COLUMNA 1-->
 +
<p>Our first system <span class="destacado">Lactadora</span></b> consists of E.coli lab strain with a synthetic gene circuit presented at the rigth.
 +
We construct the ppH-TetR module to synthetize the TetR protein which is able to repress the pTetR promoter. This synthesis is up-regulated by a pH promoter which is induced when pH is lower than 5.5, otherwise (pH>5.5) there is no TetR protein production. In this last case, the second module (pTetR-DLDH-LuxI) will express the DLDH enzyme to synthetize lactate from pyruvate produced from a glucose molecule and diffuse to medium.</p>
 +
 
 +
<p>Also, will be expressed the LuxI protein to generate homoserine lactone (HSL), a quorum sensing molecule that can diffuse outside the cell. While concentration of lactate outside the cell increases, medium will turn it an acidic environment; the higher lactate concentration, the lower pH. </p>  
 +
 
 +
<img id="Esquema" class="middle top" alt="Bacteria SuperHeroe" src="https://static.igem.org/mediawiki/2015/8/8d/UChile-Openbio-DES_Lactadora_activa_pag2.png" /><br>
 +
<h3>When pH>5.5, lactate production is ON.</h3>
 +
 
 
                         </div>
 
                         </div>
 
                         <div class="half last">
 
                         <div class="half last">
                            <p>The produced PLA is processed by a second module, which produces a hybrid protein constituted of a first protein called phasyn and of a much smaller protein having affinity for PLA. The role of this hybrid protein is to make the cell know that PLA is ready for exportation.</p>
+
<!-------COLUMNA 2-->
 +
                        <img id="Esquema" class="top" alt="Bacteria SuperHeroe" src="https://static.igem.org/mediawiki/2015/3/31/UChile-Openbio-david_comentario_pag2.png" />
 +
                        <img id="Esquema" class="middle top" alt="Bacteria SuperHeroe" src="https://static.igem.org/mediawiki/2015/c/c2/UChile-Openbio-DES_Lactadora_pag2.png" /> <br>
 +
<h3>When pH<5.5, lactate production is OFF.</h3> <br>
 +
                       
 +
<p>This way, when pH reaches a 5.5 value or lower, ppH-TetR module will be activated and TetR protein will repress the second module and synthesis of lactate will stop until pH increases again. </p>  
 +
 
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
 
                 </article>
 
                 </article>
 +
 +
<!-------LINEA DE SEPARACION-->
 +
                <h1>PLAdora: PLA production and exportation system</h1> <!--CENTRAR titulo y parrafo-->
 +
                    <p>Develop a system that can guarantee human and environmental safety by destroying cells which escape from the controlled culture media.</p>
 +
 
                 <article>
 
                 <article>
                    <img class="" alt="PLA ready to export" src="https://static.igem.org/mediawiki/2015/f/f3/Lego_description-pla_export.png" />
 
                    <p class="harto_margen">The hybrid protein sticks with PLA and the cell exports it into the extra-cellular medium, ready to be extracted and purified.</p>
 
                </article>
 
                <article>
 
                    <h3>Importan Modules of the process</h3>
 
                    <div class="division">
 
                        <div class="half">
 
                            <h3>E.coli 1 Population</h3>
 
                        </div>
 
                        <div class="half last">
 
                            <h3>E.coli 2 Population</h3>
 
                        </div>
 
                    </div>
 
                    <img class="" alt="E1 E2 population" src="https://static.igem.org/mediawiki/2015/4/49/Lego_description-important_modules.png" />
 
 
                     <div class="division">
 
                     <div class="division">
 
                         <div class="half">
 
                         <div class="half">
 +
                            <h3>What parts did we use? And why?</h3><br>
 +
<!-------COLUMNA 1-->
 
                             <div class="division">
 
                             <div class="division">
                                 <div class="half centered">
+
                                 <div class="half">
                                    Glucose transformation into lactate
+
                    <!-------COLUMNA 1-->
                                </div>
+
                    <img id="Esquema" class="middle top" alt="Super bacteria" src="https://static.igem.org/mediawiki/2015/5/53/Uchile-openbio_esquema.png" />
 
                             </div>
 
                             </div>
 +
                                <div class="half last">
 +
                    <!-------COLUMNA 2-->
 +
                    <img id="Click1" class="middle top" alt="Click" src="https://static.igem.org/mediawiki/2015/8/86/UChile-Openbio-DES_clikc1_pag1.png" />
 +
                              </div>
 +
                        </div>
 +
 +
                            <h3>What modules did we assembly?</h3><br>
 +
                    <img id="Esquema" class="middle center" alt="Modules" src="https://static.igem.org/mediawiki/2015/c/c0/UChile-Openbio-DES_Botones_modulos_pag3.png" />
 +
 
                         </div>
 
                         </div>
 
                         <div class="half last">
 
                         <div class="half last">
                            <div class="division">
+
<!-------COLUMNA 2-->
                                <div class="one_third centered">
+
 
                                    Transformation of lactate into PLA
+
                                </div>
+
                                <div class="one_third centered">
+
                                    PLA exportation
+
                                </div>
+
                            </div>   
+
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
 
                 </article>
 
                 </article>
 +
 +
                <article>
 +
                   
 +
                            <h1>How our Lactadora system does work?</h1>
 +
<!-------COLUMNA 1-->
 +
 +
<p>When HSL molecules diffuse from bacteria 1 to bacteria 2, will bind LuxR protein (completing quorum sensing) and will induced plux promoter so pCoAT and phaC enzyme and phasin-HIyA protein will be expressed at the same time. This system depend of the first system, because if pH is lower than 5.5 (e.g. due to a low consumption of lactate from medium by the second system), there is no production either of lactate and HSL in the first system so there is no induction of plux promoter by LuxR-HSL complex, thereby second system would be OFF.</p>
 +
 +
<!----LAS FOTOS DEBEN PONERSE EN 4 COLUMNAS--->
 
                 <article>
 
                 <article>
                    <h3>Regulation of lactate production in E.coli 1</h3>
 
                    <img class="" alt="Regulation E1" src="https://static.igem.org/mediawiki/2015/c/cb/Lego_description-regulation_E1.png" />
 
                    <p>When being outside the cells, lactate acidifies the medium, which is dangerous for the bacteria. That’s why a pH-sensing module has been built to detect pH levels and produce the TetR protein when the pH is lower than 5,5.</p>
 
 
                     <div class="division">
 
                     <div class="division">
                         <div class="two_third">
+
                         <div class="one_fourth">
                             <img class="" alt="Regulation E1" src="https://static.igem.org/mediawiki/2015/9/92/Lego_description-ph_low.png" />
+
                             <img id="Esquema" width=150 alt="Bacteria SuperHeroe" src="https://static.igem.org/mediawiki/2015/c/ca/UChile-Openbio-DES_PLAdora1_pag4.png" /><br>
 
                         </div>
 
                         </div>
                         <div class="one_third last">
+
                         <div class="one_fourth">
                            When being outside the cells, lactate acidifies the medium, which is dangerous for the bacteria. That’s why a pH-sensing module has been built to detect pH levels and produce the TetR protein when the pH is lower than 5,5.
+
                          <img id="Esquema" class="middle top" width=150 alt="Bacteria SuperHeroe" src="https://static.igem.org/mediawiki/2015/6/68/UChile-Openbio-DES_PLAdora2_pag4.png" /><br>
 
                         </div>
 
                         </div>
                    </div>
+
                        <div class="one_fourth">
                    <div class="division">
+
                          <img id="Esquema" class="middle top" width=150 alt="Bacteria SuperHeroe" src="https://static.igem.org/mediawiki/2015/1/1a/UChile-Openbio-DES_PLAdora4_pag4.png" /><br>
                        <div class="two_third">
+
                            <img class="" alt="Regulation E1" src="https://static.igem.org/mediawiki/2015/3/39/Lego_description-ph_increase.png" />
+
 
                         </div>
 
                         </div>
                         <div class="one_third last">
+
                         <div class="one_fourth last">
                             TetR is a repressor of the lactate production module. It means, when pH becomes lower than 5.5, the lactate production is shut off by TetR. This shrinks the lactate concentration in the medium so that the pH increases again.
+
                             <img id="Esquema" class="middle top" width=150 alt="Bacteria SuperHeroe" src="https://static.igem.org/mediawiki/2015/7/78/UChile-Openbio-DES_PLAdora3_pag4.png" /><br>
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
 +
<h3>Represantations of interaction of the different modules of the second system</h3>
 
                 </article>
 
                 </article>
 +
 
                 <article>
 
                 <article>
                    <h3>Communication between E.coli 1 and E.coli 2</h3>  
+
                            <h1>Arabinita: Safety System</h1> <!--CENTRAR titulo y parrafo-->
                    <img class="" alt="Regulation E1" src="https://static.igem.org/mediawiki/2015/a/af/Lego_description-communication.png" />
+
                     <p>Develop a system that can guarantee human and environmental safety by destroying cells which escape from the controlled culture media.
                     <p>In fact, the module that produces lactate not only produces it but is also responsible for the synthesis of a small molecule called HSL (HomoSeryl-Lactone) . This molecule is exported into the medium and is able to enter the second bacteria, being responsible for communication between E.coli 1 and 2.</p>
+
</p>
 +
 
 
                     <div class="division">
 
                     <div class="division">
                         <div class="two_third">
+
                         <div class="half">
                             <img class="" alt="Regulation E2" src="https://static.igem.org/mediawiki/2015/3/31/Lego_description-hsl.png" />
+
                             <h3>What parts did we use? And why?</h3><br>
 +
<!-------COLUMNA 1-->
 +
                        <div class="division">
 +
                                <div class="half">
 +
                    <!-------COLUMNA 1-->
 +
                    <img id="Esquema" class="middle top" alt="Super bacteria" src="https://static.igem.org/mediawiki/2015/5/53/Uchile-openbio_esquema.png" />
 +
                                </div>
 +
                                <div class="half last">
 +
                    <!-------COLUMNA 2-->
 +
                    <img id="Click1" class="middle top" alt="Click" src="https://static.igem.org/mediawiki/2015/8/86/UChile-Openbio-DES_clikc1_pag1.png" />
 +
                                </div>
 
                         </div>
 
                         </div>
                        <div class="one_third last">
+
 
                            Inside the E.coli 2 bacteria, is also inserted a module which produces a protein called LuxR.
+
                            <h3>What modules did we assembly?</h3><br>
 +
                    <img id="Esquema" class="middle top" alt="Modules" src="https://static.igem.org/mediawiki/2015/d/d1/UChile-Openbio-DES_Botones_modulos_pag1.png" />
 +
 
 
                         </div>
 
                         </div>
                    </div>
+
                         <div class="half last">
                    <div class="division">
+
<!-------COLUMNA 2-->
                         <div class="two_third">
+
                   
                            <img class="" alt="Regulation E2" src="https://static.igem.org/mediawiki/2015/3/33/Lego_description-luxr.png" />
+
<!----pendiente: hacer que se aparezca un desplegable cuando clikeo en el boton azul--->
                        </div>
+
 
                        <div class="one_third last">
+
                            The concerted action of luxR with HSL activates the other modules of the E.coli 2 (logic door « AND »),
+
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
                 </article>
+
                 </article>              
                <article>
+
                           
                    <h3>Communication between E.coli 1 and E.coli 2</h3>
+
                    <img class="" alt="Communication between" src="https://static.igem.org/mediawiki/2015/c/c8/Lego_description-between.png" />
+
                    <p>The concerted action of LuxR with HSL activates the PLA production and makes possible its exportation. This activation is possible only if there is enough lactate in the medium (since it is the same module that produces lactate and HSL). This way, E.coli 1 leads the production, telling to E.coli 2 when the PLA synthesis can begin). That’s why it is said that HSL is a communication molecule.</p>
+
                    <img class="" alt="Communication global" src="https://static.igem.org/mediawiki/2015/a/a0/Lego_description-global.png" />
+
                    <p>The concerted action of LuxR with HSL activates the PLA production and makes possible its exportation. This activation is possible only if there is enough lactate in the medium (since it is the same module that produces lactate and HSL). This way, E.coli 1 leads the production, telling to E.coli 2 when the PLA synthesis can begin). That’s why it is said that HSL is a communication molecule.</p>
+
                </article>
+
            </section>
+
            <section id="main_goal">
+
                <span class="titulo_seccion">Overview: Main goal</span>
+
 
                 <article>
 
                 <article>
 
                     <div class="division">
 
                     <div class="division">
 
                         <div class="half">
 
                         <div class="half">
                             <img class="" alt="Process" src="https://static.igem.org/mediawiki/2015/8/82/Main_goal-process.png" />
+
                             <h1>How our safety system does work?</h1>
 +
<!-------COLUMNA 1-->
 +
<p>Essentially, we create a kind of auxotrophic cells which are arabinose-dependent; that means cells need arabinose in the culture medium to survive and grow up. The specific gene circuit is shown in Figure 4. In presence of arabinose pBAD promoter are induced so TetR protein is synthetize to repress pTetR promoter of the PTetR-Lysis gene module.</p>
 +
 
 +
<img id="Esquema" class="middle top" alt="Modules" src="https://static.igem.org/mediawiki/2015/4/4f/UChile-Openbio-DES_SafetyAra_pag6.png" />
 +
 
 
                         </div>
 
                         </div>
 
                         <div class="half last">
 
                         <div class="half last">
                            <h2>Main goal</h2>
+
<!-------COLUMNA 2-->
                            <p>For the iGEM competition, the team aims to engineer a biological system, enabling it to degrade glucose in order to produce and export into the medium a biodegradable plastic called PLA.</p>
+
<br><br><p>This allows us to control genetically modified bacteria in the lab, because if bacteria escape from their medium; means there is no presence of arabinose anymore (Figure 5), pTetR promoter will no longer be repressed so cells will produce a lysis toxin which will kill them by destroying its cell membrane.
                        </div>
+
</p>
                    </div>
+
 
                </article>
+
<img id="Esquema" class="middle top" alt="Modules" src="https://static.igem.org/mediawiki/2015/e/e9/UChile-Openbio-DES_Safety_pag6.png" />
                <article id="specific_goals">
+
                    <div class="division">
+
                        <div class="one_third">
+
                            <h2>Goal 1</h2>
+
                            <p>Designing and implementing a self-regulated lactate production system which will allow light green bacteria (Figure 1) to control the lactate production by pH-sensing: the higher lactate concentration, the lower the pH, which induces a negative control in the first population of E.coli, stopping the production of lactate and by the way, of PLA.</p>
+
                        </div>
+
                        <div class="one_third">
+
                            <h2>Goal 2</h2>
+
                            <p>Designing and implementing a PLA production and exportation system which will allow blue bacteria to send the biological PLA outside the cells, into the medium. This way, the purification of the bioplastic would be easier.</p>
+
                        </div>
+
                        <div class="one_third last">
+
                            <h2>Goal 3</h2>
+
                            <p>Designing and implementing a safety system, which will consists in making arabinose-dependent the cell survival. If the medium contains arabinose, bacteria will grow up, but if bacteria escape from their medium, the cells will produce a toxin which will kill them. This way, we will ensure the safety of the persons working in the laboratory and of the environment.</p>
+
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
 
                 </article>
 
                 </article>
 +
 +
 +
 +
 +
<!-------LINEA DE SEPARACION-->
 +
 +
 
             </section>
 
             </section>
    <footer>
+
            <section id="main_goal">
        <h1>Our Sponsors</h1>
+
                <span class="titulo_seccion">Overview: Main goal</span>
        <img src="https://static.igem.org/mediawiki/2015/4/4f/Footer_sponsors.png" alt="UChile Sponsors" />
+
               
     </footer>
+
 
 +
 
 +
 
 +
            </section>
 +
 
 +
 
 +
<!----FUNCTION--->
 +
 
 +
<script>
 +
        $(document).ready(function () {
 +
            current=null;
 +
            $('.item_actividad-titulo').click(function () {
 +
                current=$(this).siblings('.item_actividad-cuerpo');
 +
                if (current.css('display') == 'none') {
 +
                    $('.item_actividad-cuerpo').slideUp();
 +
                }
 +
                current.slideToggle();
 +
            });
 +
        });
 +
     </script>
 +
 
 
         </div> <!-- #contentContainer -->
 
         </div> <!-- #contentContainer -->
 
     </body>
 
     </body>
 
</html>
 
</html>

Revision as of 12:22, 18 September 2015


TODO supply a title

Project Project overview Overview Specifics goals Main goal Background Experiment Lactate production and regulation system Safety system PLA production and exportation system Results
Overview: Background

Titulo 1

Titulo 2

Titulo 3

Project: Description

Lactadora: Lactate production and pH regulation system

Develop a system that can produces lactate and regulates its concentration. Also, a homoserine lactone molecule would be produce at the same time to activate the second system (PLA production and exportation) by quorum sensing.

What parts did we use? And why?


Super bacteria
Click

What modules did we assembly?


Modules

How our Lactadora system does work?

Our first system Lactadora consists of E.coli lab strain with a synthetic gene circuit presented at the rigth. We construct the ppH-TetR module to synthetize the TetR protein which is able to repress the pTetR promoter. This synthesis is up-regulated by a pH promoter which is induced when pH is lower than 5.5, otherwise (pH>5.5) there is no TetR protein production. In this last case, the second module (pTetR-DLDH-LuxI) will express the DLDH enzyme to synthetize lactate from pyruvate produced from a glucose molecule and diffuse to medium.

Also, will be expressed the LuxI protein to generate homoserine lactone (HSL), a quorum sensing molecule that can diffuse outside the cell. While concentration of lactate outside the cell increases, medium will turn it an acidic environment; the higher lactate concentration, the lower pH.

Bacteria SuperHeroe

When pH>5.5, lactate production is ON.

Bacteria SuperHeroe Bacteria SuperHeroe

When pH<5.5, lactate production is OFF.


This way, when pH reaches a 5.5 value or lower, ppH-TetR module will be activated and TetR protein will repress the second module and synthesis of lactate will stop until pH increases again.

PLAdora: PLA production and exportation system

Develop a system that can guarantee human and environmental safety by destroying cells which escape from the controlled culture media.

What parts did we use? And why?


Super bacteria
Click

What modules did we assembly?


Modules

How our Lactadora system does work?

When HSL molecules diffuse from bacteria 1 to bacteria 2, will bind LuxR protein (completing quorum sensing) and will induced plux promoter so pCoAT and phaC enzyme and phasin-HIyA protein will be expressed at the same time. This system depend of the first system, because if pH is lower than 5.5 (e.g. due to a low consumption of lactate from medium by the second system), there is no production either of lactate and HSL in the first system so there is no induction of plux promoter by LuxR-HSL complex, thereby second system would be OFF.

Bacteria SuperHeroe
Bacteria SuperHeroe
Bacteria SuperHeroe
Bacteria SuperHeroe

Represantations of interaction of the different modules of the second system

Arabinita: Safety System

Develop a system that can guarantee human and environmental safety by destroying cells which escape from the controlled culture media.

What parts did we use? And why?


Super bacteria
Click

What modules did we assembly?


Modules

How our safety system does work?

Essentially, we create a kind of auxotrophic cells which are arabinose-dependent; that means cells need arabinose in the culture medium to survive and grow up. The specific gene circuit is shown in Figure 4. In presence of arabinose pBAD promoter are induced so TetR protein is synthetize to repress pTetR promoter of the PTetR-Lysis gene module.

Modules


This allows us to control genetically modified bacteria in the lab, because if bacteria escape from their medium; means there is no presence of arabinose anymore (Figure 5), pTetR promoter will no longer be repressed so cells will produce a lysis toxin which will kill them by destroying its cell membrane.

Modules
Overview: Main goal