Difference between revisions of "Team:Paris Saclay/Modeling"
m |
(Cleaned page and added equations in comments) |
||
Line 9: | Line 9: | ||
</div> | </div> | ||
+ | <!-- START OF COMMENT SECTION | ||
− | + | The novel encapsulation method based on silica used in our project is a challenging | |
− | + | It has already been proven that bacteria contained in alginate beads which are themselves been wrapped in a silica monolith are able to survive and reproduce. | |
− | + | It is however interesting to study to what extent the porous medium used to allow diffusion of molecules is permissive, given the thickness of silica around the alginate beads that contain our working bacteria. | |
− | + | ||
− | + | %%START OF MODELING | |
− | + | ||
− | + | The diffusion of particules is based on Fick's first law which is given by: | |
− | + | \begin{equation} | |
− | + | \textbf{j} = -D \, \bf{\nabla} n | |
+ | \label{eq:fick} | ||
+ | \end{equation} | ||
+ | In this equation, $\textbf{j}$ is the diffusion flux, $D$ the diffusion coefficient and $n$ concentration of particles. | ||
+ | |||
+ | It can be coupled with the continuity equation stating the number second law | ||
+ | |||
+ | physical containment method based on silica presented | ||
+ | |||
+ | %%%%Start of LATEX | ||
+ | |||
+ | Diffusion de particules - Loi de Fick | ||
+ | |||
+ | |||
+ | |||
+ | Equation de continuité -> conservation nombre de particules | ||
+ | \begin{equation} | ||
+ | \partial_t n = \mathbf{\nabla} \cdot \mathrm{j} \, (+\sigma) | ||
+ | \label{eq:continuity_eq} | ||
+ | \end{equation} | ||
+ | |||
+ | Eq. \ref{eq:fick} + Eq. \ref{eq:continuity_eq} : $\partial_t n = D \, \triangle n \, (+\sigma)$ | ||
+ | |||
+ | Expression du laplacien en coordonnées sphériques | ||
+ | \begin{equation} | ||
+ | \triangle a = \frac{1}{r^2} \frac{\partial}{\partial r} \Big(r^2 \frac{\partial a}{\partial r} \Big) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \Big(\sin \theta \frac{\partial a}{\partial \theta} \Big) + \frac{1}{r^2 \sin \theta} \frac{\partial^2 \varphi}{\partial \varphi^2} | ||
+ | \end{equation} | ||
+ | |||
+ | |||
+ | |||
+ | Let's suppose that in the beads $n(r,\theta,\varphi,t) = n(r,t)$ $\rightarrow$ spherical symmetry, no dependence on angles | ||
+ | |||
+ | Steady diffusion | ||
+ | |||
+ | \begin{equation} | ||
+ | \frac{1}{r^2} \frac{\partial}{\partial r} \Big[ r^2 \frac{\partial n}{\partial r} \Big] =0 \rightarrow 2r\frac{\mathrm{d}n}{\mathrm{d}r} + r^2 \frac{\mathrm{d}^2n}{\mathrm{d}r^2} = 0 | ||
+ | \end{equation} | ||
+ | Let's consider $m=\frac{\mathrm{d}n}{\mathrm{d}r}$ $\rightarrow 2rm + r^2 \frac{\mathrm{d}m}{\mathrm{d}t}= | ||
+ | 2 r +r^2 \frac{\mathring{d}(\log m)}{\mathrm{d}r} =0$ | ||
+ | |||
+ | $\rightarrow \frac{\mathrm{d}(\log m)}{\mathrm{d}r} = -\frac{2}{r} \rightarrow \log m = -2 \log r+ cte \rightarrow m\frac{alpha}{r^2}=\frac{\mathrm{d}n}{\mathrm{d}r}$ | ||
+ | |||
+ | \begin{equation} | ||
+ | n(r) = -\frac{\alpha}{r} + \beta | ||
+ | \label{steady_eq} | ||
+ | \end{equation} | ||
+ | When $r\rightarrow + \infty \, n=n_\infty $ densité de particule loin du centre de la bille / densité du milieu ext. | ||
+ | |||
+ | \ref{steady_eq} $\rightarrow n(+\infty) = \beta = n_\infty \rightarrow n(r) = -\frac{\alpha}{r} + n_\infty$ | ||
+ | |||
+ | Problem : determination of $\alpha$. Quelles conditions aux limites choisir pour une solution physique ? | ||
+ | |||
+ | Unsteady diffusion : $\partial_t n= \frac{D}{r^2} \, \partial_r(r^2 \partial_r n)$ | ||
+ | |||
+ | \begin{equation} | ||
+ | \frac{1}{D} \frac{\partial n}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial t} \Big(r^2 \frac{\partial n}{\partial r}\Big) = -\lambda^2 | ||
+ | \label{eq:unsteady_lambda} | ||
+ | \end{equation} | ||
+ | it is necessarily negative,necessary condition for the decrease of $n$ in time | ||
+ | |||
+ | On pose $n(r,t)=T(t)*R(r)$ | ||
+ | |||
+ | \ref{eq:continuity_eq} $\rightarrow$ $\frac{1}{D} R(r) \frac{\mathrm{d}T(t)}{\mathrm{d}t} = \frac{1}{r^2} \frac{\mathrm{d}}{\mathrm{d}r} \Big[ r^2 T(t) \frac{\mathrm{d}R(r)}{\mathrm{d}r}\Big]$ | ||
+ | |||
+ | $\frac{1}{DT} \frac{\mathrm{d}T}{\mathrm{d}t} = \frac{1}{r^2 R} \frac{\mathrm{d}}{\mathrm{d}r} \Big[ r^2 \frac{\mathrm{d}R(r)}{\mathrm{d}r}\Big]$ | ||
+ | |||
+ | Temporal part | ||
+ | |||
+ | \ref{eq:unsteady_lambda} $\rightarrow$ $\frac{1}{DT} \frac{\mathrm{d}T}{\mathrm{d}t} = - \lambda^2$ | ||
+ | $ \rightarrow$ $\frac{DT}{T} = - \lambda^2 D \mathrm{d}t \rightarrow T(t) = \mathrm{e}^{-\lambda^2 D t}$ | ||
+ | |||
+ | |||
+ | Radial part | ||
+ | |||
+ | \ref{eq:unsteady_lambda} $\rightarrow$ $\frac{1}{r^2 R} \frac{\mathrm{d}}{\mathrm{d}r} \Big[ r^2 \frac{\mathrm{d}R(r)}{\mathrm{d}r}\Big] = -\lambda^2$ | ||
+ | $\rightarrow r^2 \frac{\mathrm{d}^2R}{\mathrm{d}r^2} + 2 r \frac{\mathrm{d}R}{\mathrm{d}r} + \lambda^2 r^2 R =0 \,$ Eq diff de Bessel -> résolution avec méthode de Newmann | ||
+ | |||
+ | General formula of the differential equation: | ||
+ | |||
+ | \begin{equation} | ||
+ | x^2 y''+ (2p+1)xy' + (\alpha^2x^{2r} + \beta^2)y = 0 \, \, \, \mathrm{with} \, y=y(x) | ||
+ | \end{equation} | ||
+ | |||
+ | Solution of the differential equation is : | ||
+ | \begin{equation} | ||
+ | y=x^{-p}[C_1 J_{^q/_r}(\frac{\alpha}{r}x^r)+ C_2 Y_{^q/_r}(\frac{\alpha}{r}x^r)] | ||
+ | \end{equation} | ||
+ | with $q=\sqrt{p^2-\beta^2}$ | ||
+ | |||
+ | Here we have $2p+1 =2 \rightarrow p=1/2$ | ||
+ | |||
+ | $\alpha^2x^{2r} + \beta^2 = \lambda^2 x^2 \rightarrow \beta=0, r=1, \alpha = \lambda$ | ||
+ | |||
+ | The relations we had before then becomes : | ||
+ | \begin{equation} | ||
+ | R(r) = \frac{1}{\sqrt{r}} [C_1 J_{^1/_2}(\lambda r)+ C_2 Y_{^1/_2}(\lambda r)] | ||
+ | \end{equation} | ||
+ | $J_{^1/_2}$ and $Y_{^1/_2}$ are respectively Bessel functions of the first and second kind | ||
+ | |||
+ | $(5) +(6) \rightarrow \qquad n(r,t)=\frac{\mathrm{e}^{-\lambda D^2 t}}{\sqrt{r}} \Big[C_1 J_{^1/_2}(\lambda r)+ C_2 Y_{^1/_2}(\lambda r) \Big]$ | ||
+ | |||
+ | $J_{^1/_2}(x) = \sqrt{\frac{2}{\pi x}} \sin x \qquad$ and $Y_{^1/_2}(x)=-J_{^{-1}/_2}(x) = \sqrt{\frac{2}{\pi x}} \cos x]$ | ||
+ | |||
+ | $n(r,t) = \frac{\mathrm{e}^{-\lambda D^2 t}}{\sqrt{r}} \, \sqrt{\frac{2}{\lambda \pi}} \Big[C_1 \sin(\lambda r) - C_2 \cos(\lambda r) \Big]$ | ||
+ | END OF COMMENT SECTION--> | ||
</html> | </html> | ||
{{Team:Paris_Saclay/footer}} | {{Team:Paris_Saclay/footer}} |
Revision as of 01:13, 19 September 2015
Modeling
Note
In order to be considered for the Best Model award, you must fill out this page.