Difference between revisions of "Team:KU Leuven/Research/Methods"
Line 59: | Line 59: | ||
<div class ="summarytext1"> | <div class ="summarytext1"> | ||
<div class ="part"> | <div class ="part"> | ||
− | <p>On this page, you can find all | + | <p>On this page, you can find all the methods and protocols used in the lab to obtain our results. For some techniques we included some basic theory since it is a prerequisite to get acquainted with the details behind these techniques before using them. To learn more about them click the titles below.</p> |
</div> | </div> | ||
</div> | </div> | ||
Line 77: | Line 77: | ||
A genetic procedure for moving selectable mutations of interest, called the P1 transduction, was used. Since the packaging of the bacteriophage P1 is rather inaccurate, it will on occasion package the DNA of its bacterial host instead of its own phage chromosome. This implies that the lysate will contain either packaged phage or bacterial DNA. After infection of a second host with this lysate, a transfer of parts of the chromosome from the donor strain into the receiver strain will take place. Those DNA pieces can then recombine using the FRT sites and hereby be incorporated permanently into the chromosome of the new strain. Here, the recombination was triggered by selection on kanamycin. (reference 2) <br/> | A genetic procedure for moving selectable mutations of interest, called the P1 transduction, was used. Since the packaging of the bacteriophage P1 is rather inaccurate, it will on occasion package the DNA of its bacterial host instead of its own phage chromosome. This implies that the lysate will contain either packaged phage or bacterial DNA. After infection of a second host with this lysate, a transfer of parts of the chromosome from the donor strain into the receiver strain will take place. Those DNA pieces can then recombine using the FRT sites and hereby be incorporated permanently into the chromosome of the new strain. Here, the recombination was triggered by selection on kanamycin. (reference 2) <br/> | ||
<br/> | <br/> | ||
− | In general, we used three steps to obtain | + | In general, we used three steps to obtain the double knock-outs (Figure 1). In the first step, the kanamycin cassette of the <i>tar</i> knock-out strain was removed by flippase, coded on plasmid PCP20. Afterwards, the temperature sensitive plasmid was removed by growing the cells overnight at 42°C. In a third step, the <i>tar</i> knock-out strain was infected by lysate originating from the <i>tsr</i> and <i>cheZ</i> knock-out strains. After selection on kanamycin plates, we obtained the double knock-outs. These knock-outs were confirmed by PCR. For more information, please check our result page. <br/> |
Revision as of 01:21, 19 September 2015
Methods
On this page, you can find all the methods and protocols used in the lab to obtain our results. For some techniques we included some basic theory since it is a prerequisite to get acquainted with the details behind these techniques before using them. To learn more about them click the titles below.
Contact
Address: Celestijnenlaan 200G room 00.08 - 3001 Heverlee
Telephone: +32(0)16 32 73 19
Email: igem@chem.kuleuven.be