Difference between revisions of "Team:Northeastern Boston/Description"
Line 338: | Line 338: | ||
<p>We then shifted towards adaption of a plasmid from the Chlamy Collection: pOpt_mVenus. By surrounding the first promoter with the iGEM prefix and suffix, we created an iGEM compatible protein expression <a href="https://2015.igem.org/Team:Northeastern_Boston/Design" target="_blank">plasmid</a>. In this way, teams can remove the suffix and replace it with a codon-optimized coding sequence for heterologous proteins of interest, or remove the promoter region entirely, testing alternate promoters and coding sequences upstream of a hygromycin B selection cassette.</p> | <p>We then shifted towards adaption of a plasmid from the Chlamy Collection: pOpt_mVenus. By surrounding the first promoter with the iGEM prefix and suffix, we created an iGEM compatible protein expression <a href="https://2015.igem.org/Team:Northeastern_Boston/Design" target="_blank">plasmid</a>. In this way, teams can remove the suffix and replace it with a codon-optimized coding sequence for heterologous proteins of interest, or remove the promoter region entirely, testing alternate promoters and coding sequences upstream of a hygromycin B selection cassette.</p> | ||
− | <p>Genetic engineering of microalgae is not new. <i>C. reinhardtii</i>, in particular, has been explored as a platform for heterologous proteins for years | + | <p>Genetic engineering of microalgae is not new. <i>C. reinhardtii</i>, in particular, has been explored as a platform for heterologous proteins for years but to a far lesser extent than mammalian cells or higher-order plants. Although they're difficult to engineer, microalgae are poised to disrupt biofuel, agriculture, and pharmaceuticals. With their primary reliance on CO<sub>2</sub> and their capacity for producing complex proteins, microalgae like <i>C. reinhardtii</i> represent the chassis of the future.</p> |
</div> | </div> |
Revision as of 02:21, 19 September 2015