Difference between revisions of "Team:Paris Saclay/Modeling"

Line 23: Line 23:
 
\end{equation}
 
\end{equation}
 
Let's suppose that there is no dependence on angles in the beads, i.e. there is a spherical symmetry. We can write  $n(r,\theta,\varphi,t) = n(r,t)$.
 
Let's suppose that there is no dependence on angles in the beads, i.e. there is a spherical symmetry. We can write  $n(r,\theta,\varphi,t) = n(r,t)$.
<!--GOOD-->
+
 
 
<h4>Steady diffusion</h4>
 
<h4>Steady diffusion</h4>
  
Line 34: Line 34:
 
  2r\frac{\mathrm{d}n}{\mathrm{d}r} + r^2 \frac{\mathrm{d}^2n}{\mathrm{d}r^2} = 0
 
  2r\frac{\mathrm{d}n}{\mathrm{d}r} + r^2 \frac{\mathrm{d}^2n}{\mathrm{d}r^2} = 0
 
\end{equation}
 
\end{equation}
 +
<!--GOOD-->
 +
Let's consider a variable m defined by $m=\frac{\mathrm{d}n}{\mathrm{d}r}$. The equation $eq number$ can be rewritten $ 2rm + r^2 \frac{\mathrm{d}m}{\mathrm{d}t}=
 +
2 r +r^2 \frac{\mathrm{d}(\log m)}{\mathrm{d}r} =0$.
 +
 +
  
  

Revision as of 02:54, 19 September 2015

Modeling

Note

In order to be considered for the Best Model award, you must fill out this page.

The diffusion of particules is based on Fick's first law which is given by: \begin{equation} \textbf{j} = -D \, \bf{\nabla} n \label{eq:fick} \end{equation} In this equation, $\textbf{j}$ is the diffusion flux, $D$ the diffusion coefficient and $n$ the concentration of particles. This equation can be coupled with the continuity equation $\partial_t n = \mathbf{\nabla} \cdot \mathrm{j} \quad (+\sigma)$ expressing the conservation of the total number of diffusing particles. $\sigma$ is the net particle production rate. The beads being spherical, it is more interesting to work with spherical coordinates. The Laplace operator is then defined by : \begin{equation} \triangle a = \frac{1}{r^2} \frac{\partial}{\partial r} \Big(r^2 \frac{\partial a}{\partial r} \Big) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \Big(\sin \theta \frac{\partial a}{\partial \theta} \Big) + \frac{1}{r^2 \sin \theta} \frac{\partial^2 \varphi}{\partial \varphi^2} \end{equation} Let's suppose that there is no dependence on angles in the beads, i.e. there is a spherical symmetry. We can write $n(r,\theta,\varphi,t) = n(r,t)$.

Steady diffusion

In steady diffusion, the equation $(eq number)$ is simpler as there is no dependence in time. \begin{equation} \frac{1}{r^2} \frac{\partial}{\partial r} \Big[ r^2 \frac{\partial n}{\partial r} \Big] =0 \end{equation} The equation above leads to the following differential equation : \begin{equation} 2r\frac{\mathrm{d}n}{\mathrm{d}r} + r^2 \frac{\mathrm{d}^2n}{\mathrm{d}r^2} = 0 \end{equation} Let's consider a variable m defined by $m=\frac{\mathrm{d}n}{\mathrm{d}r}$. The equation $eq number$ can be rewritten $ 2rm + r^2 \frac{\mathrm{d}m}{\mathrm{d}t}= 2 r +r^2 \frac{\mathrm{d}(\log m)}{\mathrm{d}r} =0$.