Difference between revisions of "Team:NTNU Trondheim/Modeling"

Line 5: Line 5:
 
   <h2>Modeling</h2>
 
   <h2>Modeling</h2>
 
</div>
 
</div>
 +
 +
<div class="panel panel-default col-md-4 pull-right">
 +
  <!-- Default panel contents -->
 +
  <div class="panel-heading">Modeling</div>
 +
 +
  <!-- List group -->
 +
  <ul class="list-group">
 +
    <li class="list-group-item"><a href="https://2015.igem.org/Team:NTNU_Trondheim/Modeling#mcherry">Glucose-mCherry response</a></li>
 +
    <li class="list-group-item"><a href="https://2015.igem.org/Team:NTNU_Trondheim/Modeling#growth"><i>P. Putida growth</i> and glucose toxicity</a></li>
 +
<li class="list-group-item"><a href="https://2015.igem.org/Team:NTNU_Trondheim/Modeling#growth"><i>Brixells modeling</a></li>
 +
  </ul>
 +
</div>
 +
</div>
 +
 +
 
<div class="alert alert-warning" role="alert">
 
<div class="alert alert-warning" role="alert">
 
This page contains mathematical equations using MathML. Most browsers support it (Safari, Firefox, etc.) but Chrome and IE do not. If you are using Chrome or IE, please consider viewing this page in an alternative browser.
 
This page contains mathematical equations using MathML. Most browsers support it (Safari, Firefox, etc.) but Chrome and IE do not. If you are using Chrome or IE, please consider viewing this page in an alternative browser.
Line 11: Line 26:
 
The pathway triggering the expression of mCherry upon reception of Glucose is shown in <b>Figure 1</b>
 
The pathway triggering the expression of mCherry upon reception of Glucose is shown in <b>Figure 1</b>
 
</p>
 
</p>
 +
 +
<h3 id="mcherry">Glucose-mCherry response</h3>
  
  
Line 354: Line 371:
  
 
   </math> </td>
 
   </math> </td>
               <td><math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
+
               <td>10 mmol/g/h [1]</td>
 
+
 
+
 
+
            </math></td>
+
 
             </tr>
 
             </tr>
 
 
 
 
Line 372: Line 385:
  
 
</math> </td>
 
</math> </td>
             <td><math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
+
             <td>50/h (approximation)</td>
 
+
 
+
 
+
        </math></td>
+
 
           </tr>
 
           </tr>
  
 
           <tr>
 
           <tr>
 
             <th scope="row">C<sub>2</sub> formation/dissociation rate</th>
 
             <th scope="row">C<sub>2</sub> formation/dissociation rate</th>
            <td><math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
+
              <td><math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
 
+
 
             <msub>
 
             <msub>
 
               <mi>k</mi>
 
               <mi>k</mi>
Line 388: Line 396:
 
             </msub>
 
             </msub>
  
</math> </td>
+
            </math></td>
             <td><math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
+
             <td>500/h (approximation)</td>
 
+
           
 
+
        </math></td>
+
 
           </tr>
 
           </tr>
 
   
 
   
Line 408: Line 414:
 
             <td><math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
 
             <td><math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
  
 
+
500 / h [2][3]
  
 
           </math></td>
 
           </math></td>
Line 423: Line 429:
  
 
  </math> </td>
 
  </math> </td>
             <td><math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
+
             <td>100 / h (approximation)</td>
 
+
 
+
 
+
          </math></td>
+
 
           </tr>
 
           </tr>
 
     
 
     
Line 433: Line 435:
 
             <th scope="row">mCherry maturation rate</th>
 
             <th scope="row">mCherry maturation rate</th>
 
             <td><math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
 
             <td><math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
 
 
             <msub>
 
             <msub>
 
               <mi>k</mi>
 
               <mi>k</mi>
               <mn>m</mn>
+
               <mn>d</mn>
 
             </msub>
 
             </msub>
  
</math> </td>
+
 
 +
</math></td>
 
             <td><math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
 
             <td><math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
  
 
+
2/h [4]
  
 
           </math></td>
 
           </math></td>
Line 457: Line 459:
  
 
</math> </td>
 
</math> </td>
       <td><math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
+
       <td> 40 / h [4]</td>
 
+
 
+
 
+
    </math></td>
+
 
     </tr>    
 
     </tr>    
 
   
 
   
Line 467: Line 465:
 
       </table>
 
       </table>
 
     </div>
 
     </div>
 +
 +
<h3 id="growth"><i>P. Putida growth</i> and glucose toxicity</h3>
 +
 +
 +
<h3 id="brixells">Brixells</h3>
 +
<p>The Brixells Modeling Tool</a>, has been created to assist <a href="https://2015.igem.org/Team:Warwick">Team Warwick</a> to predict the probability of bonding of 3D structures built with E. Coli expressing Zinc fingers and DNA strands. More details are available on the <a href="https://2015.igem.org/Team:NTNU_Trondheim/Collaborations">collaborations</a> page.</p>
 +
 +
<h3 id="conclusion">Conclusion</h3>
 +
<p>Modeling can be very useful to optimize the design of <i>P. Putida</i> as it is very sensitive to glucose toxicity. This framework can help in optimizing the lifetime of the glucose-sensing capsule and should be considered in the alginate formulation.</p>
 +
 +
 +
<h3>References</h3>
 +
[1] Rühl, Jana, Andreas Schmid, and Lars Mathias Blank. "Selected Pseudomonas putida strains able to grow in the presence of high butanol concentrations." Applied and environmental microbiology 75.13 (2009): 4653-4656.<br>
 +
[2] Colmer, J. A., and A. N. Hamood. "Characterization of ptxS, a Pseudomonas aeruginosa gene which interferes with the effect of the exotoxin A positive regulatory gene, ptxR." Molecular and General Genetics MGG 258.3 (1998): 250-259.<br>
 +
[3] Follonier, Stéphanie, Sven Panke, and Manfred Zinn. "A reduction in growth rate of Pseudomonas putida KT2442 counteracts productivity advances in medium-chain-length polyhydroxyalkanoate production from gluconate." Microb Cell Fact 10.1 (2011): 25.<br>
 +
[4] Piatkevich, Kiryl D., and Vladislav V. Verkhusha. "Guide to red fluorescent proteins and biosensors for flow cytometry." Methods in cell biology 102 (2011): 431.
 +
 +
<br>
 
<br>
 
<br>
 
</div>
 
</div>

Revision as of 03:17, 19 September 2015

The pathway triggering the expression of mCherry upon reception of Glucose is shown in Figure 1

Glucose-mCherry response

Figure 1. Biological molecules involved in the P. Putida signaling pathway for expressing mCherry.

Using the generalized mass action equations and the pathway shown in the figure above, we can write the kinetics of the systems in the following form:

d KGN i dt = k c ( GLC e KGN i ) k 1 KGN i 2 PtxS 2 + k 1 C 1 d C 1 dt = k 1 KGN i PtxS k 1 C 1 k 2 PGad d C 2 dt = k 2 C 1 PGad k 2 C 2 k tr C 2 d KGN 2 dt = k PtxS 2 C 1 -2C 1 d mCherry i dt = k tr C 2 k m mCherry i k d mCherry i d mCherry m dt = k m G i k d mCherry m

where KGN i is the internal ketogluconate concentration, GLC e is the external glucose concentration, PtxS is the population of free PtxS, C 1 is the KGN-PtXs dimer, C 2 is the complex that involves the dimer bound to the promoter sequence, PGad is the Gad promoter concentration, mCherry i is the immature mCherry, and mCherry m is mature mCherry. The rate constants are described below in Table 1.

Table 1 - System parameters
Description Symbol Value
Glucose diffusion rate k e 10 mmol/g/h [1]
C1 formation/dissociation rate k 1 50/h (approximation)
C2 formation/dissociation rate k 2 500/h (approximation)
PtxS production rate k PtxS 500 / h [2][3]
Protein production rate k tr 100 / h (approximation)
mCherry maturation rate k d 2/h [4]
mCherry degradation rate k d 40 / h [4]

P. Putida growth and glucose toxicity

Brixells

The Brixells Modeling Tool, has been created to assist Team Warwick to predict the probability of bonding of 3D structures built with E. Coli expressing Zinc fingers and DNA strands. More details are available on the collaborations page.

Conclusion

Modeling can be very useful to optimize the design of P. Putida as it is very sensitive to glucose toxicity. This framework can help in optimizing the lifetime of the glucose-sensing capsule and should be considered in the alginate formulation.

References

[1] Rühl, Jana, Andreas Schmid, and Lars Mathias Blank. "Selected Pseudomonas putida strains able to grow in the presence of high butanol concentrations." Applied and environmental microbiology 75.13 (2009): 4653-4656.
[2] Colmer, J. A., and A. N. Hamood. "Characterization of ptxS, a Pseudomonas aeruginosa gene which interferes with the effect of the exotoxin A positive regulatory gene, ptxR." Molecular and General Genetics MGG 258.3 (1998): 250-259.
[3] Follonier, Stéphanie, Sven Panke, and Manfred Zinn. "A reduction in growth rate of Pseudomonas putida KT2442 counteracts productivity advances in medium-chain-length polyhydroxyalkanoate production from gluconate." Microb Cell Fact 10.1 (2011): 25.
[4] Piatkevich, Kiryl D., and Vladislav V. Verkhusha. "Guide to red fluorescent proteins and biosensors for flow cytometry." Methods in cell biology 102 (2011): 431.