Difference between revisions of "Team:Dundee/Modeling"

Line 20: Line 20:
 
$$ \frac{dP}{dt} = \alpha \cdot m - \beta \cdot P $$
 
$$ \frac{dP}{dt} = \alpha \cdot m - \beta \cdot P $$
  
 +
$$ \begin{eqnarray}
 +
\frac{dHp}{dt}&=&K_{d}[Hp \cdot \alpha_{H}] - K_{a} Hp \alpha_{H}\\
 +
\frac{d \alpha_{H}}{dt}&=&K_{d}[Hp \cdot \alpha_{H}] - K_{a} Hp \alpha_{H} \\
 +
\frac{d[Hp \cdot \alpha_{H}]}{dt}&=& K_{a} Hp \alpha_{H} - K_{d}[Hp \cdot \alpha_{H}] -  K_{i}[Hp \cdot \alpha_{H}]\\
 +
\frac{d[Hp \cdot \alpha_{H} \cdot \beta_{H}]}{dt}&=&K_{i}[Hp \cdot \alpha_{H}]
 +
\end{eqnarray} $$
 
<br><br><br><br>
 
<br><br><br><br>
 
</div>
 
</div>

Revision as of 13:33, 10 July 2015

Modeling

The modeling part. Example:

$$ \frac{dm}{dt} = k_T - k_D \cdot m $$ $$ \frac{dP}{dt} = \alpha \cdot m - \beta \cdot P $$ $$ \begin{eqnarray} \frac{dHp}{dt}&=&K_{d}[Hp \cdot \alpha_{H}] - K_{a} Hp \alpha_{H}\\ \frac{d \alpha_{H}}{dt}&=&K_{d}[Hp \cdot \alpha_{H}] - K_{a} Hp \alpha_{H} \\ \frac{d[Hp \cdot \alpha_{H}]}{dt}&=& K_{a} Hp \alpha_{H} - K_{d}[Hp \cdot \alpha_{H}] - K_{i}[Hp \cdot \alpha_{H}]\\ \frac{d[Hp \cdot \alpha_{H} \cdot \beta_{H}]}{dt}&=&K_{i}[Hp \cdot \alpha_{H}] \end{eqnarray} $$



Under construction