Difference between revisions of "Team:KU Leuven/Modeling/Top"

Line 65: Line 65:
 
   <img src="https://static.igem.org/mediawiki/2015/e/eb/KU_Leuven_fossilBackground.png" width="100%">
 
   <img src="https://static.igem.org/mediawiki/2015/e/eb/KU_Leuven_fossilBackground.png" width="100%">
 
   <div class="head">
 
   <div class="head">
       <h2> 2-D continuous model </h2>
+
       <h2> References </h2>
 
     </div>
 
     </div>
 
   </div>
 
   </div>
Line 71: Line 71:
 
<div class="summarytext2">
 
<div class="summarytext2">
 
<div class="part">
 
<div class="part">
<video height="100%" controls>
+
  <p id="ref1"> Reference 1 </p>
  <source src="https://static.igem.org/mediawiki/2015/8/81/Simulation1dCont.ogg" type="video/ogg">
+
    Your browser does not support the video tag.
+
  </video>
+
<p> The top layer model predicts cell behaviour with a discretized system of Keller-Segel equations. </p>
+
 
</div>
 
</div>
 
</div>
 
</div>
Line 87: Line 83:
 
  <img src="https://static.igem.org/mediawiki/2015/2/2b/KU_Leuven_Monocotyl.jpg" width="100%" height="100%" >
 
  <img src="https://static.igem.org/mediawiki/2015/2/2b/KU_Leuven_Monocotyl.jpg" width="100%" height="100%" >
 
</div>
 
</div>
  <div class="subtext" id="ref1">
+
  <div class="subtext">
 
  <h2>Back</h2>
 
  <h2>Back</h2>
 
  </div>
 
  </div>

Revision as of 12:25, 23 July 2015

1-D continuous model

The Keller segel model used is [1] : When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

References

Reference 1