Difference between revisions of "Team:KU Leuven/Modeling/Top"
Line 51: | Line 51: | ||
<p> | <p> | ||
The Keller segel model used is <sub> <a href="#ref1">[1] </a></sub>: | The Keller segel model used is <sub> <a href="#ref1">[1] </a></sub>: | ||
− | $$\frac{\partial A}{\partial t} = \bigtriangledown^2 A + | + | $$\frac{\partial A}{\partial t} = \bigtriangledown^2 A + k_A A(1 - \frac{A}{k_p}).$$ |
+ | |||
+ | </br> | ||
+ | When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are | ||
+ | $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$ | ||
+ | |||
+ | |||
</p> | </p> | ||
</div> | </div> |
Revision as of 12:47, 23 July 2015
1-D continuous model
The Keller segel model used is [1] : $$\frac{\partial A}{\partial t} = \bigtriangledown^2 A + k_A A(1 - \frac{A}{k_p}).$$ When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$
References
Reference 1