Difference between revisions of "Template:Team:TU Eindhoven/Experimental Approach HTML"
Line 10: | Line 10: | ||
<br /> | <br /> | ||
<br /> | <br /> | ||
− | + | ||
− | + | ||
− | + | ||
<span class="tekst1"> | <span class="tekst1"> | ||
To test the viability of the designed system, we have designed a number of experiments. These experiments are conducted to verify whether the individual elements of our device work. An overview of the experiments is given below. | To test the viability of the designed system, we have designed a number of experiments. These experiments are conducted to verify whether the individual elements of our device work. An overview of the experiments is given below. | ||
</span> | </span> | ||
<br /> | <br /> | ||
+ | <br /> | ||
+ | <hr> | ||
<br /> | <br /> | ||
<br /> | <br /> |
Revision as of 15:55, 4 August 2015
Experimental approach
To test the viability of the designed system, we have designed a number of experiments. These experiments are conducted to verify whether the individual elements of our device work. An overview of the experiments is given below.
Verifying the click reaction
A vital aspect of our device is clicking the aptamers to the membrane proteins. For this click, we madeuse of the exact same click chemistry used by iGEM TU Eindhoven 2014. iGEM TU Eindhoven 2014 has used the click reaction N-terminally. To analyze whether the localization of the azide-functionalized amino acid within the loops of OmpX impedes the click reaction, we clicked a DBCO-functionalized fluorophore (TAMRA) to the outer membrane proteins. After some washing steps and spinning down, we expected the cells to remain fluorescent. To analyze the fluorescence at the single-cell level, we measured cells using the Fluorescence-Activated Cell Sorter (FACS) .
A Fluorescence-Activated Cell Sorter (FACS) is a specialized flow cytometer (see Figure X). The presence of a cell and cell size is detected using light scattering. This information is combined with the fluorescent characteristics of each cell. Based on these properties, the cells can be sorted. iGEM TU Eindhoven 2014 has written an extensive piece on the FACS which can be found here.
Martijn van Rosmalen
Martijn van Rosmalen is a promovendus at Eindhoven University within the Merkx Group. In his research, he aims to apply yeast display and fluorescence activated cell sorting to the development of new FRET sensors. Martijn van Rosmalen maintains the FACS and took the time to familiarize us with the FACS.
gave us a clarifying FACS introduction to get us started and Wiggert Altenburg
Wiggert Altenburg is currently a first-years master student. Wiggert was a member of iGEM TU Eindhoven 2014 and in his role he did all the experiments with the FACS. In his bachelor thesis, Wiggert carried out and finetuned the Click Chemistry experiments which were presented at 2014's Giant Jamboree as Click Coli by iGEM TU Eindhoven.
assisted us with the first experiments.