Difference between revisions of "Team:Aalto-Helsinki/Kinetics"

m
m
Line 408: Line 408:
 
       <td><p>0.00061 mol/l</p></td>
 
       <td><p>0.00061 mol/l</p></td>
 
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
 
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
       <td><p>Is there something special about this?</p></td>
+
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
Line 414: Line 414:
 
       <td><p>2.2e-05 mol/l</p></td>
 
       <td><p>2.2e-05 mol/l</p></td>
 
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
 
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
       <td><p>Is there something special about this?</p></td>
+
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
Line 420: Line 420:
 
       <td><p>0.00014 mol/l</p></td>
 
       <td><p>0.00014 mol/l</p></td>
 
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
 
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
       <td><p>Is there something special about this?</p></td>
+
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
Line 426: Line 426:
 
       <td><p>00012 mol/l</p></td>
 
       <td><p>00012 mol/l</p></td>
 
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
 
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
       <td><p>Is there something special about this?</p></td>
+
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
Line 432: Line 432:
 
       <td><p>2.1e-06 mol/l</p></td>
 
       <td><p>2.1e-06 mol/l</p></td>
 
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
 
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
       <td><p>Is there something special about this?</p></td>
+
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
Line 438: Line 438:
 
       <td><p>8.3e-05 mol/l</p></td>
 
       <td><p>8.3e-05 mol/l</p></td>
 
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
 
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
       <td><p>Is there something special about this?</p></td>
+
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
Line 444: Line 444:
 
       <td><p>0.0026 mol/l</p></td>
 
       <td><p>0.0026 mol/l</p></td>
 
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
 
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
       <td><p>Is there something special about this?</p></td>
+
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
Line 450: Line 450:
 
       <td><p>0.0096 mol/l</p></td>
 
       <td><p>0.0096 mol/l</p></td>
 
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
 
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
       <td><p>Is there something special about this?</p></td>
+
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
Line 456: Line 456:
 
       <td><p>0.00028 mol/l</p></td>
 
       <td><p>0.00028 mol/l</p></td>
 
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
 
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
       <td><p>Is there something special about this?</p></td>
+
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
Line 462: Line 462:
 
       <td><p>38.85 mol/l</p></td>
 
       <td><p>38.85 mol/l</p></td>
 
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
 
       <td><p>Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009</p></td>
       <td><p>Is there something special about this?</p></td>
+
       <td><p>glucose-fed, exponentially growing <span style="font-style:italic">E. coli</span></p></td>
 
     </tr>
 
     </tr>
 
   </tbody>
 
   </tbody>

Revision as of 07:24, 11 August 2015

Kinetics

We modeled our enzyme reactions in propane pathway with Michaelis-Menten enzyme kinetics. It is widely used in this kind of modeling and assumes that the reaction enzyme catalyses is rapid compared to the enzyme and substrate joining together and leaving each other. The very basic equation for irreversible one substrate reaction is \[ \text{rate} = \frac{V_{max}[S]}{K_{cat}+[S]}, \] where \([S]\) is substrate concentration. \( V_{max} \) tells us the maximum speed of the enzyme and \( K_{cat} \) ... (how calculated from specific activity!). Only few of our reactions follow this very basic equation, and for the most of them we need to use multisubstrate reaction kinetics. (reference for the book?)

pic of our pathway here to make things more clear. Do we want pictures with highlited enzymes in every subcategory?

AtoB

2\(\cdot\)Acetyl-CoA \(\rightarrow\) Acetoacetyl-CoA + CoA

AtoB is found from Escherichia Coli. The reaction shown above is reversible, but since the ratio of forward and reversible reaction favores strongly the forward one (Vf/Vr: 22.3, Source: Molecular and catalytic properties of the acetoacetyl-coenzyme A thiolase of Escherichia coli; Archives of Biochemistry and Biophysics Volume 176, Issue 1, September 1976, Pages 159–170) we can approximate is as irreversible.

Based on this article, we know that the reaction follows Ping Pong Bi Bi -model and so get the following rate equation.

\[ \frac{K_{cat}^{AtoB} \cdot [AtoB] \cdot [Acetyl\text{-}CoA]^2}{[Acetyl\text{-}CoA]^2+2\cdot K_{M}^{AtoB:Acetyl\text{-}CoA}\cdot [Acetyl\text{-}CoA]} \]

Constant

Value

Source

To note

\( K_{cat}^{AtoB} \)

10653 1/min

needs checking

Forward reaction

\( K_{M}^{AtoB:Acetyl\text{-}CoA} \)

0.00047 mol/l

Molecular and catalytic properties of the acetoacetyl-coenzyme A thiolase of Escherichia coli; Archives of Biochemistry and Biophysics Volume 176, Issue 1, September 1976, Pages 159–170

Is there something special about this?

FadB2

Acetoacetyl-CoA + NADPH + H\(^+\) \(\rightarrow\) 3-Hydroxybutyryl-CoA + NADP\(^+\)

\[ \frac{[Acetoacetyl\text{-}CoA]\cdot [NADPH]-\frac{[3\text{-}hydroxybutyryl\text{-}CoA]\cdot [NADP^+]}{K_{eq}}} {\frac{K_{M}^{FadB2:Acetoacetyl\text{-}CoA}\cdot K_{M}^{FadB2:NADPH}}{K_{cat1}^{FadB2}\cdot [FadB2]}+\frac{K_{M}^{FadB2:NADPH}\cdot [Acetoacetyl\text{-}CoA]}{K_{cat1}^{FadB2}\cdot [FadB2]}+\frac{ K_{M}^{FadB2:Acetoacetyl\text{-}CoA}\cdot [NADPH]}{K_{cat1}^{FadB2}\cdot [FadB2]}+\frac{K_{M}^{FadB2:Acetoacetyl\text{-}CoA}\cdot [NADP^+]}{K_{eq}\cdot K_{cat2}^{FadB2}\cdot [FadB2]}+} \] \[ \cdots \frac{}{+\frac{K_{M}^{FadB2:NADP^+}\cdot [3\text{-}hydroxybutyryl\text{-}CoA]}{K_{eq}\cdot K_{cat2}^{FadB2}\cdot [FadB2]}+\frac{[Acetoacetyl\text{-}CoA]\cdot [NADPH]}{K_{cat1}^{FadB2}\cdot [FadB2]}+\frac{[NADP^+]\cdot [3\text{-}hydroxybutyryl\text{-}CoA]}{K_{eq}\cdot K_{cat2}^{FadB2}\cdot [FadB2]}}\]

Constant

Value

Source

To note

\( K_{cat1}^{FadB2} \)

0.677 1/min

needs to be checked

Forward reaction

\( K_{cat2}^{FadB2} \)

0.723 1/min

needs to be checked

Reverse reaction

\( K_{M}^{FadB2:Acetoacetyl\text{-}CoA} \)

65.6 mol/l

needs to be checked

Forward reaction

\( K_{M}^{FadB2:NADPH} \)

50 mol/l

needs to be checked

Forward reaction

\( K_{M}^{FadB2:3\text{-}Hydroxybutyryl\text{-}CoA} \)

43.5 mol/l

needs to be checked

Reverse reaction

\( K_{M}^{FadB2:NADP^+} \)

29.5 mol/l

needs to be checked

Reverse reaction

Hdb

Acetoacetyl-CoA + NADPH + H\(^+\) \(\rightarrow\) 3-Hydroxybutyryl-CoA + NADP\(^+\)

The enzyme is from Clostridium acetobutylicum, but only values to be found were for Clostridium Kluyveri. This is not a problem however since the species are very close relatives and so the values ought to be close enough for comparison.

The reaction is reversible, but according to Purification and Properties of NADP-Dependent L( +)-3-Hydroxybutyryl-CoA Dehydrogenase from Clostridiurn kluyveri; Eur. J. Biochem. 32,51-56 (1973), the specific activity of the 3-hydroxybutyryl-CoA dehydrogenase (forward) as measured in the direction of acetoacetyl-CoA reduction is 478.6 U/mg protein and the rate of the oxidation reaction (reverse) proceeded with 36.6 U / mg protein so we can again approximate the reaction as irreversible.

We don’t consider how \(H^+\) affects the reaction which is justified by knowing that its concentration in the cell should always be quite constant; otherwise the cell will die. This is why we can assume that the reaction is either random or ordered Bi Bi -reaction and so the rate equation is as follows.

\[ \frac{K_{cat}^{Hdb}\cdot [Hbd] \cdot [Acetoacetyl\text{-}CoA]\cdot [NADPH]}{[Acetoacetyl\text{-}CoA]\cdot [NADPH] + K_{M}^{Hdb:NADPH}\cdot [Acetoacetyl\text{-}CoA]+K_{M}^{Hdb:Acetoacetyl\text{-}CoA}\cdot [NADPH]} \]

Constant

Value

Source

To note

\( K_{cat}^{Hdb} \)

336.4 1/min

Purification and Properties of NADP-Dependent
L( +)-3-Hydroxybutyryl-CoA Dehydrogenase from Clostridiurn kluyveri; Eur. J. Biochem. 32,51-56 (1973)

Forward reaction, Clostridium Kluyveri

\( K_{M}^{Hdb:Acetoacetyl\text{-}CoA} \)

5e-5 mol/l

Purification and Properties of NADP-Dependent
L( +)-3-Hydroxybutyryl-CoA Dehydrogenase from Clostridiurn kluyveri; Eur. J. Biochem. 32,51-56 (1973)

Clostridium Kluyveri

\( K_{M}^{Hdb:NADPH} \)

7e-5 mol/l

Purification and Properties of NADP-Dependent
L( +)-3-Hydroxybutyryl-CoA Dehydrogenase from Clostridiurn kluyveri; Eur. J. Biochem. 32,51-56 (1973)

Clostridium Kluyveri

Crt

3-hydroxybutyryl-CoA \(\rightarrow\) Crotonyl-CoA + H\( _2\)O

\[ \frac{K_{cat}^{Crt}\cdot [Crt]\cdot [3\text{-}hydroxybutyryl\text{-}CoA]}{K_{M}^{Crt:3\text{-}Hydroxybutyryl\text{-}CoA} +[3\text{-}hydroxybutyryl\text{-}CoA]} \]

Constant

Value

Source

To note

\( K_{cat}^{Crt} \)

1310.8 1/min

needs checking

Forward reaction

\( K_{M}^{Crt:3\text{-}Hydroxybutyryl\text{-}CoA} \)

3e-5 mol/l

needs checking

Is there something special about this?

Ter

Crotonyl-CoA + NADH + H\( ^+\) \(\rightarrow\) Butyryl-CoA + NAD\( ^+\)

an ordered bi-bi reaction mechanism with NADH binding first. Source: Biochemical and Structural Characterization of the trans-Enoyl-CoA Reductase from Treponema denticola; Biochemistry 2012, 51, 6827−6837

\[ \frac{K_{cat}^{Ter}\cdot [Ter] \cdot [Crotonyl\text{-}CoA]\cdot [NADH]}{[Crotonyl\text{-}CoA]\cdot [NADH] + K_{M}^{Ter:NADH}\cdot [Crotonyl\text{-}CoA]+K_{M}^{Ter:Crotonyl\text{-}CoA}\cdot [NADH] + K_{I}^{Ter:Butyryl\text{-}CoA}\cdot K_{M}^{Ter:NADH}} \]

Constant

Value

Source

To note

\( K_{cat}^{Ter} \)

1881.6 1/min

needs checking

Forward reaction

\( K_{M}^{Ter:Crotonyl\text{-}CoA} \)

2.7e-06 mol/l

70 µmol/l Biochemical and Structural Characterization of the trans-Enoyl-CoA Reductase from Treponema denticola; Biochemistry 2012, 51, 6827−6837

Is there something special about this?

\( K_{M}^{Ter:NADH} \)

5.2e-06 mol/l

Biochemical and Structural Characterization of the trans-Enoyl-CoA Reductase from Treponema denticola; Biochemistry 2012, 51, 6827−6837

Is there something special about this?

\( K_{I}^{Ter:Butyryl\text{-}CoA} \)

1.98e-07 mol/l

needs checking

Is there something special about this?

YciA

Butyryl-CoA + H\( _2\)O \(\rightarrow\) Butyrate + CoA

\[ \frac{K_{cat}^{YciA}\cdot [YciA]\cdot [Butyryl\text{-}CoA]}{K_{M}^{YciA:Butyryl\text{-}CoA} +[Butyryl\text{-}CoA]} \]

Constant

Value

Source

To note

\( K_{cat}^{YciA} \)

1320 1/min

Divergence of Function in the Hot Dog Fold Enzyme Superfamily: The Bacterial Thioesterase YciA; Biochemistry 2008, 47, 2789–2796

Forward reaction

\( K_{M}^{YciA:Butyryl\text{-}CoA} \)

3.5e-06 mol/l

Divergence of Function in the Hot Dog Fold Enzyme Superfamily: The Bacterial Thioesterase YciA; Biochemistry 2008, 47, 2789–2796

Is there something special about this?

Car

Butyrate + NADPH + ATP \(\rightarrow\) Butyraldehyde + NADP\(^+\) + AMP + 2P\(_i\)

Car-enzyme is originally from Mycobacterium marinum. We assumed that this reaction is irreversible, which justified because we have ATP in the reactants so we know that the possible reverse reaction can’t be very efficient. For the same reasons as mentioned before, we didn’t consider \(H^+\) in equations. We know that the reaction follows Bi Uni Uni Bi Ping Pong mechanism so the rate equation is

\[\frac{K_{cat}^{Car}\cdot [Car]\cdot [Butyrate]\cdot [NADPH]\cdot [ATP]}{K_{M}^{Car:Butyrate}\cdot K_{M}^{Car:NADPH}\cdot [ATP]+K_{M}^{Car:ATP}\cdot [Butyrate]\cdot [NADPH]+K_{M}^{Car:NADPH}\cdot [Butyrate]\cdot [ATP]}\]\[\cdots \frac{}{+K_{M}^{Car:Butyrate}\cdot [NADPH]\cdot [ATP]+ [Butyrate]\cdot [NADPH]\cdot [ATP]}\]

Constant

Value

Source

To note

\( K_{cat}^{Car} \)

150 1/min

needs checking

Forward reaction

\( K_{M}^{Car:Butyrate} \)

0.013 mol/l

needs checking

Is there something special about this?

\( K_{M}^{Car:NADPH} \)

4.8e-05 mol/l

needs checking

Is there something special about this?

\( K_{M}^{Car:ATP} \)

0.000115 mol/l

needs checking

Is there something special about this?

Sfp

Ado

\[ \frac{K_{cat}^{Ado}\cdot [Ado]\cdot [Butyrate]}{K_{M}^{Ado:Butyrate} +[Butyrate]} \]

Constant

Value

Source

To note

\( K_{cat}^{Ado} \)

0.215 1/min

needs checking

Forward reaction

\( K_{M}^{Ado:Butyraldehyde} \)

0.0101 mol/l

needs checking

Is there something special about this?

Other Constants

This is a table of already known typical concentrations in a cell that we use in our model.

Constant

Value

Source

To note

[Acetyl-CoA]

0.00061 mol/l

Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009

glucose-fed, exponentially growing E. coli

[Acetoacetyl-CoA]

2.2e-05 mol/l

Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009

glucose-fed, exponentially growing E. coli

[CoA]

0.00014 mol/l

Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009

glucose-fed, exponentially growing E. coli

[NADPH]

00012 mol/l

Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009

glucose-fed, exponentially growing E. coli

[NADP\( ^+\)]

2.1e-06 mol/l

Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009

glucose-fed, exponentially growing E. coli

[NADH]

8.3e-05 mol/l

Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009

glucose-fed, exponentially growing E. coli

[NAD\( ^+\)]

0.0026 mol/l

Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009

glucose-fed, exponentially growing E. coli

[ATP]

0.0096 mol/l

Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009

glucose-fed, exponentially growing E. coli

[AMP]

0.00028 mol/l

Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009

glucose-fed, exponentially growing E. coli

[H\( _2\)O]

38.85 mol/l

Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli, Bennett et al, 2009

glucose-fed, exponentially growing E. coli