Difference between revisions of "Team:Evry"

(Changed title and abstract to something more relevant.)
(Removed the immunity balance)
Line 22: Line 22:
 
a too important immune response can lead to food allergies or Inflammatory Bowel Disease.  
 
a too important immune response can lead to food allergies or Inflammatory Bowel Disease.  
 
Absence of an immune response, in the other hand, plays a role in the spread of cancer cells.</p-->
 
Absence of an immune response, in the other hand, plays a role in the spread of cancer cells.</p-->
<div id="img-div"><img src="https://static.igem.org/mediawiki/2015/8/8a/Shcema_immune_syst.jpg" class="img-rounded img-responsive"></img></div>
+
<!--div id="img-div"><img src="https://static.igem.org/mediawiki/2015/8/8a/Shcema_immune_syst.jpg" class="img-rounded img-responsive"></img></div-->
 
<!--p class="lead">Dendritic cells can orchestrate the immune response. By acting on them using engineered micro-organisms,
 
<!--p class="lead">Dendritic cells can orchestrate the immune response. By acting on them using engineered micro-organisms,
 
we want to <a href="https://2015.igem.org/Team:Evry/Project/Induction">induce</a> or <a href="https://2015.igem.org/Team:Evry/Project/Repression">repress</a> the immune response when the immune system fails.</p-->
 
we want to <a href="https://2015.igem.org/Team:Evry/Project/Induction">induce</a> or <a href="https://2015.igem.org/Team:Evry/Project/Repression">repress</a> the immune response when the immune system fails.</p-->

Revision as of 17:09, 12 August 2015

Yeast cancer immunotherapy.

EVRY-GENOPOLE IGEM 2015 PROJECT

Abstract

Reshaping immunotherapy landscape.

Cancer thrives by preventing the immune system from targeting tumor cells. While current immunotherapies use dendritic cells to activate T-cells towards specific tumor antigens, they remain expensive and of variable efficiency against tumor immunosuppressive environment. To address these issues, our team mainly focused on engineering a S. cerevisiae yeast immunotherapy that was ultimately tested in vivo on mice presenting melanoma.

Three complementary strategies were combined: First, in order to modulate the tumor environment, yeast secreting immune modulators, GM-CSF and IFNgamma, were encapsulated into alginate beads and injected in tumors. Secondly, to break the immune tolerance against cancer cells, T4 and T8 lymphocytes were elicited by a yeast antigen display system. Last, to deliver cytotoxic compounds solely in the tumor environment, a yeast hypoxia bio-sensor was designed. A side project consisted in engineering E. coli to drive MAIT lymphocytes against cancer cells instead of their original targets, parasitized cells.


Scroll to top To top