Team:Evry/Notebook

Here is our lab notebook. Follow all the wet lab experiments we did, day by day.

  • Yeast surface-display
  • Yeast encapsulation
    • May
      • Week 1
      • Week 2
      • Week 3
      • Week 4
  • Hypoxia bio-sensor
    • May
      • Week 1
      • Week 2
      • Week 3
      • Week 4
  • MAIT cells stimulation
    • May
      • Week 1
      • Week 2
      • Week 3
      • Week 4
  • Antigene prediction
    • May
      • Week 1
      • Week 2
      • Week 3
      • Week 4

Friday, 12th June 2015

Extraction of AgA1P from yeast genome with BSAI
AGA1P was extracted with BSAI overhangs for subsequent cloning from W303 and BY4000, according to Looke et al., PMC 2011.

Protocol

  1. 1) Resuspend one yeast colony in 100 µl of 200 mM LiAc, 1% SDS solution and incubate at 70°C
  2. 2) Add 300 µl of 36% ethanol and vortex
  3. 3) Spin down DNA at 15 000 g for 3 minute
  4. 4) Wash pellet with 70% ethanol
  5. 5) Disolve pellet in 100 µl of water and spin down debris at 15 000 g for 15 seconds

PCR of AGA1P with primers AGA1P R1/F1 with Q5 polymerase using a gradient (57/60/63°C)

Q5 PCR Program

  1. step 1 : 98°C – 30 seconds
  2. step 2 : 98°C – 10 seconds
  3. step 3 : 57, 60 or 63°C
  4. step 4 : 72°C – 1 min (repeat steps 2-4 for 40 cycles)
  5. step 5 : 16°C - Hold

Monday, 14th June 2015

PCR on yeast genome for site directed mutagenesis :
ADH1 amplification with 2 sets of primers:

  1. 1) primers ADH1 sub F1 + ADH1 sub R1 with 3 anealing temperatures : 57°C (B1), 60°C (B2), 63°C (B3)
  2. 2) primers ADH1 sub F2 + ADH1 sub R2 with 3 anealing temperatures : 57°C (B4), 60°C (B5), 63°C (B6)

Malpha IFN gamma amplification with 2 sets of primers:

  1. 1) primers Mfalpha IFNgamma F1/R1 with 3 anealing temperatures : 57°C (B7), 60°C (B8), 63°C (B9)
  2. 2) primers Mfalpha IFNgamma F1 + Mfalpha GMCSF R1 with 3 anealing temperatures :57°C (B10), 60°C (B11), 63°C (B12)

Friday, 19th June 2015

Golden gates
2 µl T4 ligase buffer 10x
0.5 µl BSAI
0.5 µl T4 ligase
water (qsp 20µl)

Golden gate 1 (A1) inserts:

  1. - New insert1 m1 Cter (AGA2P)
  2. - New insert1 m2 Cter (-OVA1 DEC205)
  3. - Insert1 m2 (GAL10 GAL7 AGA1P)
  4. - Insert1 m3 extracted from yeast genome (AGA1P)
  5. - pYGG1

Golden gate 2 (A2) inserts:

  1. - New insert1 m1 Cter (AGA2P)
  2. - Insert1 m2 (GAL10 GAL7 AGA1P)
  3. - Insert1 m3 extracted from yeast genome (AGA1P)
  4. - pYGG1

Golden gate 3 (A3) inserts :

  1. - insert3 (OVA2)
  2. - pYGG2

Saturday, 20thJune 2015

PCR colony using primers URA F1 and URA R5 2.0 on A1, A2 and A3
PCR colony products gel electrophoresis (1% agarose)
Results: Clones from golden 3 (A3, see 19/06) present the right size. Clones from golden 1 and 2 (A1 and A2, see 19/06) are negative. It seems there was no amplification. Miniculture (40)

Sunday, 21thJune 2015

PCR colony (again)

PCR Colony

  • 1 µl of resuspended colony in 20 µl LB
  • 1 µl URA F1
  • 1 µl URA R5 2.0
  • 7 µl water
  • 10 µl PCR mix (Dreamtaq)

Q5 PCR Program

  • Step1 95°C - 5 min
  • Step 2 95°C – 30 s
  • Step 3 50°C – 30s
  • Step 4 72°C – 2 min (repeat step 2-4, 45 times)
  • Step 5 72°C – 10 min
  • Step 6 4°C – Pause

PCR colony products gel electrophoresis (1% agarose) Results: We got clones with expected sizes.

Monday, 22ndJune 2015

PCR clean up and nanodrop :

  1. A1 = 209.1 ng/µl (insert1 m3)
  2. A2 = 56.1 ng/µl (AGA2P)
  3. A6 = 114.3 ng/µl (IFN gamma)
  4. A7 = 93.7 ng/µl (GMCSF)
  5. B8 = 114 ng/µl (Malpha IFNgamma)
  6. B10 = 134.2 ng/µl (Malpha GMCSF)
  7. B11 = 163.9 ng/µl (Malpha GMCSF)
  8. C1 = 180.7 ng/µl (ADH1)
  9. C2 = 302.9 ng/µl (ADH1)

G2/G2/G3/G4 Golden gates
2 µl T4 ligase buffer 10x
0.5 µl BSAI + 0.5 T4 ligase
water (qsp 20µl)

  1. ADH1 Malpha IFNgamma construction (G1): C1 + B8 + A6 + pYGG1
  2. ADH1 Malpha GMCSF construction (G2): C1 + B10 + A7 + pYGG1
  3. ADH2 Malpha IFNgamma (G3): C2 + B8 + A6 + pYGG1
  4. ADH2 … GMCSF construction (G4): C2 + B11 + A7 + pYGG1

E. coli transformation

  1. Add 10 µl plasmids to 50 µl E. coli competent cells on ice and let the mix rest on ice for 15 min
  2. Shock the mix at 42°C for 45 seconds, transfer the mix on ice for 10 min
  3. Add 800 µl of Luria Bertoni (LB) media to the mix and let it recover at 37°C and 750 rpm on shakers for 1 hour
  4. Plate 50 µl and 150 µl to plates containing LB agar media with ampificilin
  5. Put plates in growth incubators at 37°C for 24 hours

Tuesday, 23rd June 2015

G2/G2/G3/G4 Colony PCR and Miniculture

Wednesday, 24th June 2015

G2/G2/G3/G4 Library from miniculture :
750 µl of G1 to G8 were mixed with 750 µl of glycerol 50% and put in the freezer at -80°C.

G2/G2/G3/G4 Minipreped using NucleoSpin Plasmid (LOT 1306/003 Macherey-Nagel):
G1

  • G1 mini = 270.5 ng/µl (260/280 = 1.81 ; 260/230 = 1.72)
  • G2 mini = 287.4 ng/µl (260/280 = 1.84 ; 260/230 = 1.63)

G2
  • G3 mini = 146.4 ng/µl (260/280 = 1.81 ; 260/230 = 1.42)
  • G4 mini = 264.3 ng/µl (260/280 = 1.79 ; 260/230 = 1.80)

G3 (ADH2 Malpha IFNgamma)
  • G5 mini = 164.9 ng/µl (260/280 = 1.82 ; 260/230 = 1.49)
  • G6 mini = 128.1 ng/µl (260/280 = 1.84 ; 260/230 = 1.56)

G4
  • G7 mini = 587.4 ng/µl (260/280 = 1.67 ; 260/230 = 0.63)
  • G8 mini = 160.2 ng/µl (260/280 = 1.81 ; 260/230 = 1.91)

Thursday, 25th June 2015

G samples were sent to sequencing using following primers :

  • URA F1/SR1 lig IFN gamma
  • S2 lig IFN gamma/SR2 lig IFN gamma
  • URA F1/SR1 lig IFN gamma

Sequencing mixes :
G4 : 4 µl DNA + 1.25 µl/primer + qsq water
G6 : 6 µl DNA + 1.25 µl/primer + qsq water

Friday, 3rd July 2015

AGA2P -OVA1 DEC205 (pYYG1) construction : Nanodrop results

  • New insert1 m1 Cter (AGA2P) = 10 ng/µl
  • New insert1 m2 Cter PCR1 (-OVA1 DEC205) = 77 ng/µl
  • pYGG1 (P11) = 107.6 ng/µl

AGA2P OVA1 DEC205 (pYGG1) new golden gate Golden gate mix (20µl):

  1. 15.5 µl H20
  2. 2 µl T4 ligase buffer 10x
  3. 0.425 µl New insert1 m1 Cter (AGA2P)
  4. 0.194 µl New insert1 m2 Cter PCR1 (-OVA1 DEC205)
  5. 1 µl pYGG1
  6. 0.5 µl BSA I
  7. 0.5 µl T4 ligase

AGA2P OVA1 DEC205 (pYGG1) E. coli transformation

  1. Add 10 µl plasmids to 50 µl E. coli competent cells on ice and let the mix rest on ice for 15 min
  2. Shock the mix at 42°C for 45 seconds, transfer the mix on ice for 10 min
  3. Add 800 µl of Luria Bertoni (LB) media to the mix and let it recover at 37°C and 750 rpm on shakers for 1 hour
  4. Plate 50 µl and 150 µl to plates containing LB agar media with ampificilin
  5. Put plates in growth incubators at 37°C for 24 hours

Sunday, 5th July 2015

AGA2P OVA1 DEC205 (pYGG1) construction
PCR colony using primers URA F1 and URA R5 2.0

Tuesday, 7th July 2015

AGA2P OVA1 DEC205 (pYGG1) construction
Miniculture

Wednesday, 8th July 2015

AGA2P OVA1 DEC205 (pYGG1) construction: PCR colony and gel electrophoresis
1 µl of resuspended colony in 20 µl LB
1 µl URA F1
1 µl URA R5 2.0
7 µl water
10 µl PCR mix (Dreamtaq)

PCR Program
Step1 95°C - 5 min
Step 2 95°C – 30 s
Step 3 50°C – 30 s
Step 4 72°C – 2 min
Step 5 72°C – 10 min
Step 6 4°C – Pause

PCR colony products gel electrophoresis (1% agarose)

Thursday, 9th July 2015

Miniculture of transformed AGA2P OVA1 DEC205 (pYGG1) E.coli
19 µl colony resuspended Luria Bertoni media in 4 mL of Luria Bertoni media complemented with 4 µl of ampicilin (100 mg/µl) and put to incubate at 37°C overnight.
Samples names : D13/ D23/ D33 / D43

Friday, 10th July 2015

Samples of AGA2P OVA1 DEC205 (pYGG1) construction were minipreped using NucleoSpin Plasmid (LOT 1306/003 Macherey-Nagel) and nanodroped :

  • Mini P1 = 449.9 µl (260/230= 1.82 ; 260/280= 1.89) (from D13 and D23, see 09/07)
  • Mini P2 = 414.2 µl (260/230= 1.83 ; 260/280= 1.94) (from D33 and D43, see 09/07)

Monday, 13th July 2015

Mat alpha IFN gamma) ADH1 pYGG1 construction: Golden gate
Mix (20µl)
11.35 µl H20
2 µl T4 ligase buffer 10x
0.177 µl ADH1
4.473 µl (Mat alpha IFN gamma) = Gblock
1 µl pYGG1
0.5 µl BSA I
0.5 µl T4 ligase

Program :

Mat alpha IFN gamma ADH1 (pYGG1) E. coli transformation

  1. Add 10 µl plasmids to 50 µl E. coli competent cells on ice and let the mix rest on ice for 15 min
  2. Shock the mix at 42°C for 45 seconds, transfer the mix on ice for 10 min
  3. Add 800 µl of Luria Bertoni (LB) media to the mix and let it recover at 37°C and 750 rpm on shakers for 1 hour
  4. Plate 50 µl and 150 µl to plates containing LB agar media with ampificilin
  5. Put plates in growth incubators at 37°C for 24 hours

Monday, 13th July 2015

Samples of AGA2P OVA1 DEC205 (pYGG1) construction were minipreped using NucleoSpin Plasmid (LOT 1306/003 Macherey-Nagel) and nanodroped :

  • AGA2P OVA1 DEC205 1 (SD1) = 449.9 ng/µl
  • AGA2P OVA1 DEC205 2 (SD2) = 414.2 ng/µl

Samples of AGA2P OVA1 DEC205 (pYGG1) construction, Mini P1 and Mini P2 were sent to sequencing

Wednesday, 15th July 2015

Mat alpha IFN gamma ADH1 (pYGG1) construction : PCR colony
Mix (20 µl)
10 µl PCR mix (DreamTaq)
1 µl URA F1
1 µl URA R5 2.0
1 µl colony resuspended in Luria Bertoni media
7 µl water


PCR colony program :
Step1 95°C - 5 min
Step 2 95°C – 30 s
Step 3 50°C – 30s
Step 4 72°C – 2 min (Repeat step 2-4 35 times)
Step 5 72°C – 10 min
Step 6 4°C – Pause

Thursday, 16th July 2015

Mat alpha IFN gamma ADH1 (pYGG1) PCR colony products gel electrophoresis (1% agarose)
Only clones A4, C6 and D7 corresponded to the size expected for (Mat alpha IFN gamma) ADH1 : 2200 pb.

Miniculture
19 µl colony resuspended Luria Bertoni media in 4 mL of Luria Bertoni media complemented with 4 µl of ampicilin (100 mg/µl) and put to incubate at 37°C overnight.

Friday, 17th July 2015

OVA2 (pYGG2): golden gate
Mix (20 µl)
2 µl T4 ligase
0.5 µl BSA I
0.5 T4 µl DNA ligase
0.801 µl OVA2 (12,6 ng/µl) (Gblock)
0.714 µl pYGG2 (107.6 ng/µl)
15.4 µl water

Program:

Monday, 20th July 2015

OVA2 (pYGG2) E. coli transformation

  1. Add 10 µl plasmids to 50 µl E. coli competent cells on ice and let the mix rest on ice for 15 min
  2. Shock the mix at 42°C for 45 seconds, transfer the mix on ice for 10 min
  3. Add 800 µl of Luria Bertoni (LB) media to the mix and let it recover at 37°C and 750 rpm on shakers for 1 hour
  4. Plate 50 µl and 150 µl to plates containing LB agar media with ampificilin
  5. Put plates in growth incubators at 37°C for 24 hours

Tuesday, 21st July 2015

OVA2 (pYGG2) E. coli transformation results
Previously (see 2015-07-21) plates were put overnight into incubators at 37°C.
There is no colonies on the plates, either because the E. coli mix died before being plated or because the golden gate failed in some ways. The latter hypothesis is unliky as we woµld have red negative colonies onto the plate.
=> It turns out we did not use the right plasmid. We shoµld have used pYGG1

Thursday, 23rd July 2015

OVA2 pYGG1 golden gate
Mix (20 µl)
2 µl T4 ligase
0.5 µl BSA I
0.5 T4 µl DNA ligase
1 µl OVA2 (12,6 ng/µl) (Gblock)
1 µl pYGG1 (107.6 ng/µl)
15 µl water

Program :

OVA2 pYGG1 E.Coli transformation

  1. Add 10 µl plasmids to 50 µl E. coli competent cells on ice and let the mix rest on ice for 15 min
  2. Shock the mix at 42°C for 45 seconds, transfer the mix on ice for 10 min
  3. Add 800 µl of Luria Bertoni (LB) media to the mix and let it recover at 37°C and 750 rpm on shakers for 1 hour
  4. Plate 50 µl and 150 µl to plates containing LB agar media with ampificilin
  5. Put plates in growth incubators at 37°C for 24 hours

AGA2P OVA1 DEC205 minipreped samples were sent to sequencing using two sets of primers :
Seq.ID 26EB08 => SD1.1 (primers : URA F1 / URA F1 reverse seq) (The sequence length is 0 nt)
Seq.ID 26EB09 => SD1.2 (primers : URA R5 2.0 forward seq / URA R5 2.0) (The sequence length is 0 nt)
Seq.ID 26EB10 => SD1.1’ (replicate of SD1.1) (results : The sequence length is 23 nt)
Seq.ID 26EB11 => SD1.2’ (replicate of SD1.2) (results : The sequence length is 41 nt)
Seq.ID 26EB12 => SD2.1 (same as SD1.1) (results : The sequence length is 22 nt)
Seq.ID 26EB13 => SD2.2 (same as SD1.2) (results : The sequence length is 737 nt)
Seq.ID 26EB14 => SD2.1’ (replicate of SD2.1) (results : The sequence length is 0 nt)
Seq.ID 26EB15 => SD2.2’ (Replicate of SD2.2) (Results : The sequence length is 20 nt)

Friday, 23rd July 2015

Mat alpha IFN gamma ADH1 (pYGG1) : Sample was minipreped using NucleoSpin Plasmid (LOT 1306/003 Macherey-Nagel) from the miniculture (see 15-07-15) and nanodroped :

  • Mata IFN gamma pYGG1 mini (A4 mini) = 256 ng/µl (260/230= 1.23 ; 260/280= 1.73)
  • Mata IFN gamma pYGG1 mini (C6 mini) = 66.8 ng/µl (260/230= 1.39 ; 260/280= 1.85)
  • Mata IFN gamma pYGG1 mini (D7 mini) = 71.4 ng/µl (260/230= 1.67 ; 260/280= 1.88)

Mat alpha IFN gamma ADH1 (pYGG1) sequencing using only one primer set (URA F1/ URA R5 2.0):

Seq.ID 26EB02 => A4 mini .1 (results : The sequence length is 1110 nt)
Seq.ID 26EB03 => A4 mini .2 (replicate) (results : The sequence length is 1076 nt)
Seq.ID 26EB04 => C6 mini .1 (results : The sequence length is 986 nt)
Seq.ID 26EB05 => C6 mini .2 (replicate) (results : The sequence length is 978 nt)
Seq.ID 26EB06 => D7 mini .1 (results : The sequence length is 23 nt)
Seq.ID 26EB07 => D7 mini .2 (replicate) (results : The sequence length is 38 nt)

Friday, 24th July 2015

OVA2 (pYGG1) E.coli transformation results
The 2 plates put into the incubators showed 4 colonies at most.
We decided to wait for the plates to develop a bit more and to put back the miniculture and colony PCR to Monday 27th 2015. Meanwhile, after a few hours into the incubator, plates were wrapped with parafilm and put into the fridge at 4°C.

Monday, 27th July 2015

OVA2 (pYGG1): PCR colony and gel electrophoresis
Previously (see 2015-07-23), we transformed E. coli with our golden gate products and plated the transformed E. coli onto 2 plates.
We took 8 positive colonies from the plates and resuspend them separately into 20 µl of Luria Bertoni media.


PCR colony mix
1 µl of resuspended colony in 20 µl LB
1 µl URA F1
1 µl URA R5 2.0
7 µl water
10 µl PCR mix (Dreamtaq)


PCR Program
Step1 95°C - 5 min
Step 2 95°C – 30 s
Step 3 50°C – 30s
Step 4 72°C – 2 min (Repeat step 2-4 35 times)
Step 5 72°C – 10 min
Step 6 4°C – Pause

PCR colony products gel electrophoresis (1% agarose)

PCR from New insert1 m1 Cter (PCR001)

  • amplification of AGA2P with primers containing DEC205 overhang


    Mix (50µl)
    2,5 µl FWD AGA2P
    2,5 µl RV AGA2P
    1 µl New insert1 m1 Cter
    19 µl water
    25 µl PCR mix (Q5)


    PCR program
    Step 1 95°C
    Step 2 95°C
    Step 3 60°C
    Step 4 72°C (Repeat step 2-4 31 times)
    Step 5 72°C
    Step 6 12°C

PCR from New insert1 m2 Cter (PCR002)

  • amplification of DEC205 with primers containing AGA2P overhang
    Mix (50µl)
    2,5 µl FWD DEC205
    2,5 µl RV DEC205
    1 µl New insert1 m2 Cter
    19 µl water
    25 µl PCR mix (Q5)
    PCR program
    Step 1 95°C
    Step 2 95°C
    Step 3 60°C
    Step 4 72°C (Repeat step 2-4 31 times)
    Step 5 72°C
    Step 6 12°C

    PCR001 and PCR002 gel electrophoresis :

    PCR clean up and nanodrop of AGA2P and DEC205 products :

    • AGA2P = 72 .3 ng/µl (260/280 = 1.79 ; 260/230 = 0.76)
    • DEC205 = 104.2 ng/µl (260/280 = 1.79 ; 260/230 = 0.42)

    Golden gates of :

    1. pYGG1 + AGA2P + DEC205
    2. PYGG1 + AGA2P + OVA1 (Gblock)
    3. pYGG1 + ADH1 (miniprep « ADH1 ») + Malpha GMCSF (B10, see 22/06/15)

    Program :

    E. coli transformation with golden gate products

    1. Add 10 µl plasmids to 50 µl E. coli competent cells on ice and let the mix rest on ice for 15 min
    2. Shock the mix at 42°C for 45 seconds, transfer the mix on ice for 10 min
    3. Add 800 µl of Luria Bertoni (LB) media to the mix and let it recover at 37°C and 750 rpm on shakers for 1 hour
    4. Plate 50 µl and 150 µl to plates containing LB agar media with ampificilin
    5. Put plates in growth incubators at 37°C for 24 hours

    Tuesday, 28th July 2015

    We sent to sequencing Mat alpha IFN gamma ADH1 (pYGG1) with new primers since previous sequencing results were unconclusive.
    Furthermore, in order to check the presence of our desired fragments, we also performed a multiple PCR on A4, C6 and D7 samples.


    A4, C6 and D7 samples sequencing :
    Seq.ID 26EB16 - A41 (URA F1/SR1 lig IFNg)
    Seq.ID 26EB17 - A41.2 (replicate of A41)
    Seq.ID 26EB18 - A42 (S2 lig IFNg/SR2 lig IFNg)
    Seq.ID 26EB19 - A42.2 (replicate of A42)
    Seq.ID 26EB20 - C61 (URA F1/SR1 lig IFNg)
    Seq.ID 26EB21 - C61.2
    Seq.ID 26EB22 - C62 (S2 lig IFNg/SR2 lig IFNg)
    Seq.ID 26EB23 - C62.2
    Seq.ID 26EB24 - D71 (URA F1/SR1 lig IFNg)
    Seq.ID 26EB25 - D71.2
    Seq.ID 26EB26 - D72 (S2 lig IFNg/SR2 lig IFNg)
    Seq.ID 26EB27 - D72.2

    Multiple PCR using URA F1/SR1 lig IFNg and S2 lig IFNg/SR2 lig IFNg primers :


    PCR mix (20 µl)
    1 µl of DNA
    1 µl forward primer
    1 µl reverse primer
    7 µl water
    10 µl PCR mix (Dreamtaq)

    ADH1 (miniprep « ADH1 ») Mat alpha GMCSF (B10, see 22/06/15) (pYGG1) golden gate

    E. coli transformation with golden gate products

    1. Add 10 µl plasmids to 50 µl E. coli competent cells on ice and let the mix rest on ice for 15 min
    2. Shock the mix at 42°C for 45 seconds, transfer the mix on ice for 10 min
    3. Add 800 µl of Luria Bertoni (LB) media to the mix and let it recover at 37°C and 750 rpm on shakers for 1 hour
    4. Plate 50 µl and 150 µl to plates containing LB agar media with ampificilin
    5. Put plates in growth incubators at 37°C for 24 hours

    Tuesday, 28th July 2015

    We sent to sequencing AGA2P OVA1 DEC205 (pYGG2) with new primers since previous sequencing results were unconclusive.
    Furthermore, in order to check the presence of our desired fragments, we also performed a multiple PCR on SD1 and SD2 samples.

    SD1 and SD2 samples sequencing:


    Sample SD2
    Seq.ID 26EB28 (URA F1/URA F1 Rev Seq V2)
    Seq.ID 26EB29 (URA R5 2.0 Fw seq V2/URA R5 2.0)
    Seq.ID 26EB30 (URA F1/ URA R1)
    Seq.ID 26EB31 (URA F2/URA R5 2.0)
    Seq.ID 26EB32 (URA F1/URA F1 Rev Seq V2)
    Seq.ID 26EB33 (URA R5 2.0 Fw seq V2/URA R5 2.0)
    Seq.ID 26EB34 (URA F1/ URA R1)
    Seq.ID 26EB35 (URA F2/URA R5 2.0)


    Sample SD1
    Seq.ID 26EB36 (URA F1/URA F1 Rev Seq V2)
    Seq.ID 26EB37 (URA R5 2.0 Fw seq V2/URA R5 2.0)
    Seq.ID 26EB38 (URA F1/ URA R1)
    Seq.ID 26EB39 (URA F2/URA R5 2.0)
    Seq.ID 26EB40 (URA F1/URA F1 Rev Seq V2)
    Seq.ID 26EB41 (URA R5 2.0 Fw seq V2/URA R5 2.0)
    Seq.ID 26EB42 (URA F1/ URA R1)
    Seq.ID 26EB43 (URA F2/URA R5 2.0)

    Multiple PCR
    PCR mix (20 µl)
    1 µl of DNA
    1 µl forward primer
    1 µl reverse primer
    7 µl water
    10 µl PCR mix (Dreamtaq)

    Golden gates of :

    • Golden 1 : pYGG1 + AGA2P + DEC205
    • Golden 2 : PYGG1 + AGA2P + OVA1 (Gblock) (dec 205 v2)

    E. coli transformation with golden gate products

    1. Add 10 µl plasmids to 50 µl E. coli competent cells on ice and let the mix rest on ice for 15 min
    2. Shock the mix at 42°C for 45 seconds, transfer the mix on ice for 10 min
    3. Add 800 µl of Luria Bertoni (LB) media to the mix and let it recover at 37°C and 750 rpm on shakers for 1 hour
    4. Plate 50 µl and 150 µl to plates containing LB agar media with ampificilin
    5. Put plates in growth incubators at 37°C for 24 hours

    Wednesday, 29th July 2015

    Results of E.coli transformed with AGA2P OVA1 (Gblock "dEC205 - v2") (pYGG1) and AGA2P DEC205 (pYGG1)
    We got a few colonies for AGA2P OVA1 but none for AGA2P DEC2065 so we performed a PCR colony for AFGA2P OVA1 and a second transformation for AGA2P DEC205 with remaining golden gate (see 28/07).

    AGA2P OVA1: PCR colony
    1 µl of resuspended colony in 20 µl LB
    1 µl URA F1
    1 µl URA R5 2.0
    7 µl water
    10 µl PCR mix (Dreamtaq)

    PCR Program
    Step1 95°C - 5 min
    Step 2 95°C – 30 s
    Step 3 50°C – 30 s
    Step 4 72°C – 2 min (repeat step 2-4 30 times)
    Step 5 72°C – 10 min
    Step 6 4°C – Pause

    AGA2P OVA1: PCR colony gel electrophoresis (1% agarose)

    Yeast transformation with:

    • AGA2P OVA1 DEC205 (SD1)
    • AGA1
    • AGA2P OVA1 DEC205 (SD2)

      Protocol:

      1. From the W303 yeast culture at DO=1, harvest in sterile tube at 5000 rpm for 5 min
      2. Pour off the medium, resuspend the cells in 25 ml of sterile water and centrifuge again
      3. Pour off the water, resuspend the cells in 1 ml of 0.1 M LiAc and transfer the suspension to a 1.5 ml microfuge tube
      4. Pellet the cells at top speed for 15 sec and remove the LiAc with a micropipette
      5. Resuspend the cells with 0.1 LiAc to a final volume of 500 µl
      6. Vortex the cell suspension and pipette 50 µl samples into new 1.5 ml tubes. Pellet the cells and remove the LiAc with a micropipette
      7. Add the following to the samples in order:

        • 240 µl PEG 50%
        • 36 µl 1 M LiAc
        • 25 µl Salmon sperm DNA (2 mg/ml)
        • 50 µl water and plasmid (10 ug)
        • Vortex each tube vigorously until the cell pellet has been completely mixed. Usually takes about 1 min
        • Incubate at 30°C for 30 min
        • Heat shock in a water bath at 42°C for 15 minute
        • Ice for 2 minutes
        • Centrifuge at 5000 rpm for 15 sec and remove the transformation mix with a micropipette
        • Pipette 1 ml of sterile water into each tube and resuspend the pellet by pipetting it up and down gently
        • Plate 50 µl and 150 µl of the transformation mix onto plates with corresponding media
        • Incubate at 30°C for 3 days

      Wednesday, 29th July 2015

      Results of E.coli transformed with ADH1 (miniprep « ADH1 ») + Malpha GMCSF (B10, see 22/06/15) (pYGG1)
      We got no colonies, so we performed a second E.coli transformation with remaining golden gate (see 28/07).

      E. coli transformation with golden gate products

      1. Add 10 µl plasmids to 50 µl E. coli competent cells on ice and let the mix rest on ice for 15 min
      2. Shock the mix at 42°C for 45 seconds, transfer the mix on ice for 10 min
      3. Add 800 µl of Luria Bertoni (LB) media to the mix and let it recover at 37°C and 750 rpm on shakers for 1 hour
      4. Plate 50 µl and 150 µl to plates containing LB agar media with ampificilin
      5. Put plates in growth incubators at 37°C for 24 hours

      AGA1P sequencing

      Friday, 31st July 2015

      Since on the 07/30, we coµld not perform all yeast transformations (transformation 5 or T5), due to lack of samples for AGA1P, we transformed all the constructions into yeast again.
      The yeasts that were transformed the day before are already growing except for the plate CoT2 that did not contain enough substrate for the yeast to feed off.

      Yeast transformation:

      • T4: ADH1 Ma IFNg (pYGG1)li

      Protocol:

      1. From the W303 yeast culture at DO=1, harvest in sterile tube at 5000 rpm for 5 min
      2. Pour off the medium, resuspend the cells in 25 ml of sterile water and centrifuge again
      3. Pour off the water, resuspend the cells in 1 ml of 0.1 M LiAc and transfer the suspension to a 1.5 ml microfuge tube
      4. Pellet the cells at top speed for 15 sec and remove the LiAc with a micropipette
      5. Resuspend the cells with 0.1 LiAc to a final volume of 500 µl
      6. Vortex the cell suspension and pipette 50 µl samples into new 1.5 ml tubes. Pellet the cells and remove the LiAc with a micropipette
      7. Add the following to the samples in order:

        • 240 µl PEG 50%
        • 36 µl 1 M LiAc
        • 25 µl Salmon sperm DNA (2 mg/ml)
        • 50 µl water and plasmid (10 ug)
        • Vortex each tube vigorously until the cell pellet has been completely mixed. Usually takes about 1 min
        • Incubate at 30°C for 30 min
        • Heat shock in a water bath at 42°C for 15 minute
        • Ice for 2 minutes
        • Centrifuge at 5000 rpm for 15 sec and remove the transformation mix with a micropipette
        • Pipette 1 ml of sterile water into each tube and resuspend the pellet by pipetting it up and down gently
        • Plate 50 µl and 150 µl of the transformation mix onto plates with corresponding media:
          • pYGG1 => URA-
          • pYGG2 => TRP-
          • pYGG1 + pYGG2 => TRP- URA-
        • Incubate at 30°C for 3 days

      Friday, 31st July 2015

      Since on the 07/30, we coµld not perform all yeast transformations (transformation 5 or T5), due to lack of samples for AGA1P, we transformed all the constructions into yeast again.
      The yeasts that were transformed the day before are already growing except for the plate CoT2 that did not contain enough substrate for the yeast to feed off.

      AGA1P minipreped using NucleoSpin Plasmid (LOT 1306/003 Macherey-Nagel) and nanodroped :
      AGA1P.1 = 44.2 ng/µl

      Yeast transformations:

      • T1: OVA2 (pYGG2)
      • T2: AGA2P OVA1 (pYGG1) + AGA1P (pYGG2)
      • T3: AGA2P OVA1 DEC205 (pYGG1) + AGA1P (pYGG2)
      • T5: AGA2P/GFP (pYGG1) + AGA1P (pYGG2)
      • T6: AGA2P GFP (pYGG1)
      • T7: AGA2P OVA DEC205 (pYGG1)
      • T8: AGA2P OVA1 (pYGG1)

      Protocol:

      1. From the W303 yeast culture at DO=1, harvest in sterile tube at 5000 rpm for 5 min
      2. Pour off the medium, resuspend the cells in 25 ml of sterile water and centrifuge again
      3. Pour off the water, resuspend the cells in 1 ml of 0.1 M LiAc and transfer the suspension to a 1.5 ml microfuge tube
      4. Pellet the cells at top speed for 15 sec and remove the LiAc with a micropipette
      5. Resuspend the cells with 0.1 LiAc to a final volume of 500 µl
      6. Vortex the cell suspension and pipette 50 µl samples into new 1.5 ml tubes. Pellet the cells and remove the LiAc with a micropipette
      7. Add the following to the samples in order:

        • 240 µl PEG 50%
        • 36 µl 1 M LiAc
        • 25 µl Salmon sperm DNA (2 mg/ml)
        • 50 µl water and plasmid (10 ug)
        • Vortex each tube vigorously until the cell pellet has been completely mixed. Usually takes about 1 min
        • Incubate at 30°C for 30 min
        • Heat shock in a water bath at 42°C for 15 minute
        • Ice for 2 minutes
        • Centrifuge at 5000 rpm for 15 sec and remove the transformation mix with a micropipette
        • Pipette 1 ml of sterile water into each tube and resuspend the pellet by pipetting it up and down gently
        • Plate 50 µl and 150 µl of the transformation mix onto plates with corresponding media:
          • pYGG1 => URA-
          • pYGG2 => TRP-
          • pYGG1 + pYGG2 => TRP- URA-
        • Incubate at 30°C for 3 days

      Monday, 3rd August 2015

      Colony PCR of yeast transformants with following primers :

      AGA2P/DEC205
      P1-4 => URA F1/ URA R1
      P5-8 => URA R2/ URA R5 2.0

      SD1
      R1-4 => URA F1/URA R5 2.0
      R5-6 => URA F1/URA R1
      R7-8 => URA F2/URA R5 2.0

      SD2
      T1-4 => URA F1/ URA R5 2.0
      T5-6 => URA F1/URA R1
      T7-8 => URA F2/URA R5 2.0

      Library
      "130" P2 (AGA2P/DEC205)
      "131" P4 (AGA2P/DEC205)
      "132" R4 (SD1)
      "133" R5 (SD1)
      "134" R6 (SD1)
      "135" T1 (SD2)
      "136" T3 (SD2)
      "137" T4 (SD2)
      "138" T5 (SD2)

      Monday, 3rd August 2015

      Colony PCR of yeast transformants with following primers :
      GMCSF
      Q1-8 => URA F1/URA R5 2.0

      IFNgamma
      S1-4 => URA F1/SR1 lig IFN gamma
      S5-8 => S2 lig IFN gamma/SR2 lig IFN gamma

      Tuesday, 4th August 2015

      Colony PCR of transformed E. coli with ADH1 Mata GMCSF and ADH1 Mata IFNg
      Colony PCR mix :
      10 µl dreamtaq master mix
      7 µl water
      1 µl reverse primer
      1 µl forward primer

      Colony PCR gel electrophoresis (1% agarose)

      Colony PCR yeast gel electrophoresis (1% agarose)

      Wednesday, 5th August 2015

      Gel electrophoresis of ADH1 Mata GMCSF and ADH1 Mata IFNg

      Colony PCR2 of ADH1 Mata GMCSF and ADH1 Mata IFNg with following primers :
      Colony PCR mix (20 µl):
      3.5 µl water
      0.5 µl primer forward
      0.5 µl primer reverse
      0.5 µl of e.coli resuspended in 10 µl water

      PCR program :
      step 1 : 95°C
      step 2 : 95°C
      step 3 : 72°C
      step 4 : 60°C (URA F1/ URA R5 2.0) or 53°C (others)
      step 5 : 72°C

      Miniculture of ADH1 Mata GMCSF and ADH1 Mata IFNg
      The remaining resusepended e.coli was put into 4 mL of Luria Bertoni media containing with 4 µl ampicilin.

      Colony PCR of T4 (see 31/07)
      Colony PCR mix (20 µl):
      10 µl PCR mix (Dreamtaq)
      qsq µl water
      2.5 µl primer forward
      2.5µl primer reverse
      yeast resuspended in 10 µl water (separated in two parts table )

      PCR program :
      step 1 : 95°C – 5 min
      step 2 : 95°C – 30 seconds
      step 3 : 60°C – 30 seconds
      step 4 : 72°C – 4 min (repeat step 2-4 45 times)
      step 5 : 4°C – Pause

      Golden gate of ADH1 mat alpha GMCSF (pYGG1) construction :
      Mix (20 µl) :
      0.849 µl ADH1
      3.243 µl Mat alpha GMCSF
      3.1 µl PYGG1
      2 µl T4 ligase buffer
      0.5 µl T4 ligase
      0.5 µl BSA I

      Program :

      E. coli transformation with golden gate ADH1 mat alpha GMCSF (pYGG1)

      1. Add 10 µl plasmids to 50 µl E. coli competent cells on ice and let the mix rest on ice for 15 min
      2. Shock the mix at 42°C for 45 seconds, transfer the mix on ice for 10 min
      3. Add 800 µl of Luria Bertoni (LB) media to the mix and let it recover at 37°C and 750 rpm on shakers for 1 hour
      4. Plate 50 µl and 150 µl to plates containing LB agar media with ampificilin
      5. Put plates in growth incubators at 37°C for 24 hours

      Wednesday, 5th August 2015

      Colony PCR of T1/2/3/5/6/7/8 (see 31/07)
      Colony PCR mix (20 µl):
      10 µl PCR mix (Dreamtaq)
      qsq µl water
      2.5 µl primer forward
      2.5µl primer reverse
      yeast resuspended in 10 µl water (separated in two parts table )

      PCR program :
      step 1 : 95°C – 5 min
      step 2 : 95°C – 30 seconds
      step 3 : 60°C – 30 seconds
      step 4 : 72°C – 4 min (repeat step 2-4 45 times)
      step 5 : 4°C – Pause

      Thursday, 6th August 2015

      Yeast transformation without OVA1 Protocol:

      1. From the W303 yeast culture at DO=1, harvest in sterile tube at 5000 rpm for 5 min
      2. Pour off the medium, resuspend the cells in 25 ml of sterile water and centrifuge again
      3. Pour off the water, resuspend the cells in 1 ml of 0.1 M LiAc and transfer the suspension to a 1.5 ml microfuge tube
      4. Pellet the cells at top speed for 15 sec and remove the LiAc with a micropipette
      5. Resuspend the cells with 0.1 LiAc to a final volume of 500 µl
      6. Vortex the cell suspension and pipette 50 µl samples into new 1.5 ml tubes. Pellet the cells and remove the LiAc with a micropipette
      7. Add the following to the samples in order:

        • 240 µl PEG 50%
        • 36 µl 1 M LiAc
        • 25 µl Salmon sperm DNA (2 mg/ml)
        • 50 µl water and plasmid (10 ug)
        • Vortex each tube vigorously until the cell pellet has been completely mixed. Usually takes about 1 min
        • Incubate at 30°C for 30 min
        • Heat shock in a water bath at 42°C for 15 minute
        • Ice for 2 minutes
        • Centrifuge at 5000 rpm for 15 sec and remove the transformation mix with a micropipette
        • Pipette 1 ml of sterile water into each tube and resuspend the pellet by pipetting it up and down gently
        • Plate 50 µl and 150 µl of the transformation mix onto plates with corresponding media:
          • pYGG1 => URA-
          • pYGG2 => TRP-
          • pYGG1 + pYGG2 => TRP- URA-
        • Incubate at 30°C for 3 days

      Friday, 7th August 2015

      PCR colony yeast and E. coli

      Saturday, 8th August 2015

      GMCSF E.coli PCR colony

      IFNg E.coli PCR colony

      Monday, 10th August 2015

      Golden gate ADH1 matalpha GMCSF (pYGG1)
      Mix (20µl):
      Mat alpha GMCSF (gblock)
      pYGG1
      ADH1

      2 µl DNA T4 ligase buffer
      0.5 µl DNA ligase
      0.5 µl BSA I
      qsp water

      Program :

      Tuesday, 11th August 2015

      E. coli transformation of ADH1 Mat alpha GMCSF (pYGG1) (again)

      1. Add 10 µl plasmids to 50 µl E. coli competent cells on ice and let the mix rest on ice for 15 min
      2. Shock the mix at 42°C for 45 seconds, transfer the mix on ice for 10 min
      3. Add 800 µl of Luria Bertoni (LB) media to the mix and let it recover at 37°C and 750 rpm on shakers for 1 hour
      4. Plate 50 µl and 150 µl to plates containing LB agar media with ampificilin
      5. Put plates in growth incubators at 37°C for 24 hours

      Golden gate ADH1 mat alpha IFNgamma (pYGG1)
      Mix :
      0.033 (x 3) µl Sample « B8 » (M :atalpha IFNgamma) (114 ng/µl)
      0.058 (x 3) µl Sample « A6 » (IFNgamma) (114 ng/µl)
      0.274 µl Sample « ADH1 » (75 ng/µl)
      0.929 µl pYGG1
      2 µl DNA T4 ligase buffer
      0.5 µl DNA ligase
      0.5 µl BSA I

      Tuesday, 11th August 2015

      Culture of T1, T2 T3 and WT yeast from plates in glucose (without induction)

      Wednesday, 12th August 2015

      Culture induction of T1/T2/T3 and WT yeast

      1. Discard media after centrifugation at 3000 rpm for 4 minutes
      2. Resuspend yeast in 10 mL induction media :
        • galactose 1X without tryptophane for T1
        • galactose 1X without tryptophane and uracile for T2 and T3
      3. Put into incubator and agitation at 25 °C for 48 hours

      Wednesday, 12th August 2015

      E. coli transformation of ADH1 Mat alpha IFNgamma (pYGG1)

      1. Add 10 µl plasmids to 50 µl E. coli competent cells on ice and let the mix rest on ice for 15 min
      2. Shock the mix at 42°C for 45 seconds, transfer the mix on ice for 10 min
      3. Add 800 µl of Luria Bertoni (LB) media to the mix and let it recover at 37°C and 750 rpm on shakers for 1 hour
      4. Plate 50 µl and 150 µl to plates containing LB agar media with ampificilin
      5. Put plates in growth incubators at 37°C for 24 hours

      Colony PCR of pYGG1 ADH1 matalpha GMCSF with following set of primers :
      - URA F1 / URA R5 2.0
      - URA F1 / SR1 lig IFNgamma
      - S2 lig IFNgamma / SR2 lig GMCSF

      Thursday, 13th August 2015

      Colony PCR of ADH1 Mat alpha IFN gamma (pYGG1) with folllowing set of primers :
      - URA F1 / URA R5 2.0
      - URA F1 / SR1 lig IFNgamma
      - S2 lig IFNgamma / SR2 lig IFNgamma

      Mix (10 µl) :
      5 µl dreamtaq master mix
      0.5 µl colony resuspended in 19 µl Luria Bertoni
      0.5 µl reverse primer
      0.5 µl forward primer
      3.5 µl water

      Miniprep of ADH1 Mat alpha GMCSF (pYGG1) using NucleoSpin Plasmid (LOT 1306/003 Macherey-Nagel) :

      • AGA2P = 72 .3 ng/µl (260/280 = 1.79 ; 260/230 = 0.76)

      GMCSF (1) = 304.2 ng/µl (280/260 = 1.82 ; 260/230 = 1.71)

      Monday, 17th August 2015

      Yeast Colony PCR on T1, T2 and T3 (induced/non induced)

      1. Resuspend colony in 10 µl water
      2. Microwave 8 minutes 5 µl of resuspended colony (900W)
      3. Add 10 µl of mix dreamtaq
      4. Add 2.5 µl primer (URA R5 2.0/ URA F1)

      PCR Program
      Step1 95°C - 5 min
      Step 2 95°C – 30 s
      Step 3 57/60/63 °C – 30s
      Step 4 72°C – 2 min (repeat step 2-4, 41 cycles)
      Step 5 72°C – 10 min
      Step 6 4°C – Pause

      T1/2/3 Colony PCR gel electrophoresis (1% agarose)
      Expected sizes :
      T1 => OVA2 (290 bp)
      T2 => AGA1P (2225 bp) & AGA2P OVA1 (461 bp)
      T3 => AGA1P (2285 bp) & AGA2P OVA1 DEC205 (1381 bp)

      Miniprep of ADH1 Mat alpha IFN gamma using NucleoSpin Plasmid (LOT 1306/003 Macherey-Nagel) :

      • IFN 1 = 343.5 ng/µl
      • IFN 4 = 290 ng/µl
      • IFN 6 = 265 ng/µl
      • IFN 7 = 377 ng/µl

      Tuesday, 18th August 2015

      We decided to remake the yeast colony PCR from 17/08 using same protocol to check our results a second time.
      We tested plates of the same construction, T1, T2 and T3, made by different experimentators. For T1, we tested 3 different plates, each at 2 different temperatures : 53 and 60°C.
      We also tested T3 with 3 different sets of primers (see gel picture below). Yeast Colony PCR on T1, T2 and T3 (induced/non induced)

      1. Resuspend colony in 10 µl water
      2. Microwave 8 minutes 5 µl of resuspended colony (900W)
      3. Add 10 µl of mix dreamtaq
      4. Add 2.5 µl primer (URA R5 2.0/ URA F1)

      PCR Program
      Step1 95°C - 5 min
      Step 2 95°C – 30 s
      Step 3 57/60/63 °C – 30s
      Step 4 72°C – 2 min (repeat step 2-4, 41 cycles)
      Step 5 72°C – 10 min
      Step 6 4°C – Pause

      T1/2/3 Colony PCR gel electrophoresis (1% agarose) primers used :
      T1/T2/WT : URA F1/R5 2.0
      T3.1 : URA R5 2.0/F1
      T3.2 : URA F1/R1
      T3.3 : URA F2/ R5.2.0

      Wednesday, 19th August 2015

      We started taking care of our biobricks ! We planned to deposite four biobricks : DEC205, OVA2, IFNgamma and Mat alpha IFN gamma. For OVA2 and DEC205, we just amplified the fragments with primers designed to make the fragment fit into the pSB1C3 plasmid. For IFN gamma and Mat alpha IFN gamma, as IFN gamma presented a restriction site, we proceeded to do a site directed mutagenenis to remove it. Mutagenesis of IFNgamma and Mat alpha IFN gamma: We performed two consecutive PCR, the first one (PCR1) to introduce a mutation at the desired site and the second one (PCR2) to amplify the entire fragment (see 21/08). In between, PCR clean-ups were done using Nucleospin Gel and PCR Clean-up (LOT :1504/001).

      IFNgamma
      PCR1 primers:

      • P005 FN IFNgamma/RV Mat IFNgamma
      • FW Mat IFNgamma/P006 RV IFNgamma

      Mat alpha IFN gamma PCR

      PCR1 primers :
      • P007 FW Mat alpha GMCSF/ RV Mat IFN gamma

      Mix (50 µl) :
      25 µl Q5 master mix
      2.5 µl reverse primer
      2.5 µl forward primer
      1 µl DNA
      19 µl water

      Q5 PCR Program
      step 1 : 98°C – 30 seconds
      step 2 : 98°C – 10 seconds
      step 3 : 57, 60 or 63°C
      step 4 : 72°C – 1 min (repeat steps 2-4 for 40 cycles)
      step 5 : 16°C - Hold

      Thursday, 20th August 2015

      Mutagenesis of IFNgamma and Mat alpha IFN gamma: Gel electrophoresis (2% agarose) for the PCR1 products

      Friday, 21th August 2015

      We checked by digestion the following constructions :

      • ADH1 Mat alpha IFN gamma pYGG1 (sample « IFNgamma)
      • pYGG1
      • water

      Mix :
      2 µl NEB 2.1 Buffer
      1 µl Hind III
      2 µl DNA
      15 µl water

      We let the mix, 1 hour at 37°C and 500 rpm

      Digestion gel electrophoresis (agarose 1%)

      Friday, 21th August 2015

      We checked by digestion the following constructions :

      • AGA2P OVA1 DEC205 pYGG1 (sample « SD »)
      • AGA2P OVA1 pYGG1 (sample « DEC -»)
      • OVA2 pYGG2 (sample « OVA2 »)
      • pYGG2
      • water

      Mix :
      2 µl NEB 2.1 Buffer
      1 µl Hind III
      2 µl DNA
      15 µl water

      We let the mix, 1 hour at 37°C and 500 rpm

      Digestion gel electrophoresis (agarose 1%)

      Monday, 24th August 2015

      PCR of the fragment RFP of pYGG1 for biosensor design using primers 3B FW 2.0 and 3B reverse :


      Mix (50 µl) :
      25 µl Q5 master mix
      2.5 µl reverse primer
      2.5 µl forward primer
      1 µl DNA
      19 µl water

      Q5 PCR Program
      step 1 : 98°C – 30 seconds
      step 2 : 98°C – 10 seconds
      step 3 : 57, 60 or 63°C
      step 4 : 72°C – 1 min (repeat steps 2-4 for 40 cycles)
      step 5 : 16°C - Hold

      Mutagenesis of IFNgamma and Mat alpha IFN gamma: PCR2

      IFN gamma
      PCR2 primers :

      • P015 FW IFN gamma/P016 RV IFNgamma

      Mat alpha IFN gamma
      PCR2 primers :

      • P015 FW IFN gamma / P016 RV IFN gamma

      Mix (50 µl) :
      25 µl Q5 master mix
      2.5 µl reverse primer
      2.5 µl forward primer
      1 µl DNA
      19 µl water

      Q5 PCR Program
      step 1 : 98°C – 30 seconds
      step 2 : 98°C – 10 seconds
      step 3 : 57, 60 or 63°C
      step 4 : 72°C – 1 min (repeat steps 2-4 for 40 cycles)
      step 5 : 16°C - Hold

      Wednesday, 26th August 2015

      Miniprep and nanodrop of pYGG1, pYGG2 and AGA1P-pYGG2 using NucleoSpin Plasmid (LOT 1306/003 Macherey-Nagel) :

      • pYGG1 = 68 ng/µL
      • pYGG2 = 127 ng/µL
      • AGA1P (pYGG2) = 32 ng/µL

      Wednesday, 26th August 2015

      PCR Clean up of biobrick Mata-IFNg and biobrick IFNg

      • BB Mata-IFNg = 50 ng/µL
      • BB IFNg = 35 ng/µL

      Gel electrophoresis (1% agarose) of biobricks Mata-IFNg (BB Mata-IFNg) and IFNg (BB IFNg)

      Wednesday, 26th August 2015

      PCR Clean up of Biosensor3

      • Biosensor 3 = 46 ng/µL

      Gel electrophoresis (1% agarose) of biosensor 3

      Thursday, 27th August 2015

      E.coli transformation of biosensor 2 and 3

      1. Add 10 µl plasmids to 50 µl E. coli competent cells on ice and let the mix rest on ice for 15 min
      2. Shock the mix at 42°C for 45 seconds, transfer the mix on ice for 10 min
      3. Add 800 µl of Luria Bertoni (LB) media to the mix and let it recover at 37°C and 750 rpm on shakers for 1 hour
      4. Plate 50 µl and 150 µl to plates containing LB agar media with ampificilin
      5. Put plates in growth incubators at 37°C for 24 hours

      Thursday, 27th August 2015

      PCR of biobrick OVA1

      Mix (50 µl) :
      25 µl Q5 master mix
      2.5 µl reverse primer (P012 RV OVA1)
      2.5 µl forward primer (P012 FW OVA1)
      1 µl DNA (SD1)
      19 µl water

      Q5 PCR Program
      step 1 : 98°C – 30 seconds
      step 2 : 98°C – 10 seconds
      step 3 : 57, 60 or 63°C
      step 4 : 72°C – 1 min (repeat steps 2-4 for 40 cycles)
      step 5 : 16°C - Hold

      Gel electrophoresis (2% agarose)

      Digestion of the following biobricks using NEB kit:

      • BB IFNg
      • BB Mata-IFNg
      • BB DEC 205
      • BB OVA1
      • BB OVA2
      • pSB1C3
      • Digestion mix:
        2µL NEB Buffer 2.1
        0.5µL Eco RI
        0.5 µL PstI
        500 ng DNA
        water qsp 20µL

        The mix was left at 1h 37°C under agitation 500rpm and 20 minutes at 80°C.

        Friday, 28th August 2015

        PCR clean-up and nanodrop of digested products: ul>

      • BB IFNg D = 13 ng/µL
      • BB Mata-IFNg D = 10 ng/µL
      • BB DEC 205 D = 15.4 ng/µL
      • BB OVA1 D = 9 ng/µL
      • BB OVA2 D = 14 ng/µL
      • pSB1C3 D = 7.4 ng/µL

      Ligation of digested products into pSB1C3 with T4 Ligase (ratio 3:1):
      2µL T4 DNA Ligase Buffer
      50ng pSB1C3
      3:1 insert
      water qsp 20µL
      1µL T4 DNA Ligase

      We let the mix at room temperature for 30 minutes and at 65°C for 10 minutes.

      E.coli transformation with ligated products:

      1. Add 10 µl plasmids to 50 µl E. coli competent cells on ice and let the mix rest on ice for 15 min
      2. Shock the mix at 42°C for 45 seconds, transfer the mix on ice for 10 min
      3. Add 800 µl of Luria Bertoni (LB) media to the mix and let it recover at 37°C and 750 rpm on shakers for 1 hour
      4. Plate 50 µl and 150 µl to plates containing LB agar media with chloramphenicol
      5. Put plates in growth incubators at 37°C for 24 hours

      Friday, 28th August 2015

      Colony PCR of transformed E.coli with biosensor 2 and 3:
      PCR colony mix
      1 µl of resuspended colony in 20 µl LB
      1 µl URA F1
      1 µl URA R5 2.0
      7 µl water
      10 µl PCR mix (Dreamtaq)


      PCR Program
      Step1 95°C - 5 min
      Step 2 95°C – 30 s
      Step 3 50°C – 30 s
      Step 4 72°C – 2 min (repeat step 2-4 30 times)
      Step 5 72°C – 10 min
      Step 6 4°C – Pause

      Gel electrophoresis (1% agarose)

      Miniculture of biosensor 2 and 3


      Example notebook entry

      I am a big text

      i am a justified text.

      On the left

      Center

      i am a green text on the right.

      I am a fixed-width text
      I am some code I am a link
      Scroll to top To top