Team:KU Leuven/Symposium
Symposium
Event summary
For the symposium, we invited and welcomed academic staff, students, sponsors
and iGEM supporters. About eighty people were present.
Evaluation form quotes
"Very professionally organized. Very well run. Great speakers - diverse agenda."
"The lectures were super interesting!"
"Great symposium, I loved it!!"
"Amazing keynote speakers and a fantastic moderator. Everything was perfectly organized.”
"Food was very good!"
"It was the best symposium I have ever attended!!! Outstanding organization!!!"
"Very good symposium. The keynote speakers were marvellous, the debate was interesting, with panel members who were very well selected!"
Home speaker Vera van Noort talked about the lessons from systems biology of a
minimal organism for synthetic biology. In the EMBL where she worked, they
wanted to completely describe one organism. They worked on Mycoplasma
pneumoniae. To understand it completely, they studied three different levels:
The metabolism, transcription (regulation) and protein complexes. The take-home
lessons for synthetic biology in short: transcription regulation is more than
operons and transcription factors, enzymes can catalyse multiple reactions and
are organized in multi-subunit complexes, proteins can be part of multiple
complexes and can be regulated by post-translational modifications and small
peptides are essential.
Victor Dillard, the first keynote speaker, is the
founder of Desktop Genetics. The company is building software for biologists,
with a focus on synthetic biology. The software helps to improve the efficiency
and to lower the costs. He explained that genome editing remains hard and became
a design and software challenge, and not purely biological challenge. This is
because genome editing needs to be accurate, precise, effective and rapid.
Sebastian Maerkl, the second keynote speaker, discussed the topic cell-free
synthetic biology. He explained that microfluidics with cell-free lysate can be
used for rapid prototyping of biological systems. One of the advantages is that
it has defined and controllable reaction conditions. In vitro prototyping is
used to speed up research in synthetic biology. The pipeline of cell-free
synthetic biology: design a biological circuit, build the circuit, test parts
and circuits, characterize working circuits, clone and implement in vivo.
The second home speaker, Yves Peeters, gave a talk about directed evolution of
polymerases using synthetic biology methods. The research of Yves Peeters is
part of the research domain Xenobiology, creating alternative life, one of the
approaches of synthetic biology. XNA, also called orthogonal DNA, is designed by
several labs using different strategies. Making organisms with XNA will be an
ultimate biosafety tool for synthetic biology. Before being able to have a
liveable organism that uses XNA, there is a need for polymerases recognizing the
specific XNA. To create the wanted polymerases, Yves uses directed evolution,
including mutagenesis, screening, amplification and iteration of the most active
enzymes.
Speakers
Sebastian Maerkl, École Polytechnique Fédérale de Lausanne, The
Laboratory of Biological Network Characterization (LBNC)
Sebastian Maerkl's lab conducts research at the interface of engineering and
biology and is active in the areas of systems biology, synthetic biology and
molecular diagnostics. They are driven by the desire to learn how to rationally
design and engineer biological systems. Sebastian Maerkl’s research aims to
develop new microfluidic technologies and apply them to solve biological
problems. His rare expertise allows him to combine the design of new tools with
advanced research in biology. Sebastian Maerkl is internationally recognized for
his many outstanding contributions. Particularly in combining synthetic biology
and computational systems with microfluidics, he demonstrated that the
expression of genes in vivo can be provided based on the binding energy profiles
in vitro. His studies will focus on five areas: the bioengineering of
biosystems, the engineering of transcriptional regulatory networks, the
engineering of genes and genomes, the engineering of biological systems de novo
and the development of a new generation of diagnostic devices.
Victor Dillard, Chief Operating Officer & Founder, Desktop Genetics
Victor obtained his masters in chemical engineering with honours at Imperial
College London before completing a specialist biotechnology and business masters
with distinction at the University of Cambridge. Since graduating, Victor
founded Desktop Genetics with a vision to change modern biotech R&D and enable
rapid and accurate end-to-end genome engineering experiments through their
proprietary software platform. Within two years of founding Desktop Genetics,
Victor has raised over $600,000 of private equity and grant financing, and
delivered over $400,000 of revenue. Today, Victor heads the company's business
development and operations and is leading the product and technology expansion
into CRISPR and genome editing.
Vera van Noort, Center for Microbial and Plant Genetics
The research group led by Vera van Noort is interested in understanding
biological systems as a whole. They try to achieve this through computational
analysis of large-scale data generated by the ever growing number of new
technologies that can systematically measure the behaviour of multiple cellular
components, such as biochemical activities, biophysical properties, subcellular
localization and interaction. They use and develop new methods to integrate,
visualize and query the large amounts of information available and in such a way
come to new biological discoveries. A particular focus of the group is
proteomics and post-translational modifications.
Yves Peeters, Laboratory of Biochemistry, Molecular and Structural Biology
After completing his master thesis at KU Leuven, Yves obtained an IWT fellowship
for his PhD work in the field of synthetic biology. His primary interest goes to
DNA polymerases and their modifications towards creation of artificial nucleic
acids.
iGEM Symposium Day on Synthetic Biology, Cell Systems and Ethics in Biochemistry
Details
DATE:
07.09.2015 10:00 – 19:00
VENUE:
KU Leuven Campus Arenberg, Celestijnenlaan 200A (Computer Science) aula 00.225,
Heverlee, Belgium
PROGRAM
KU Leuven iGEM 2015 Symposium
on Synthetic Biology, Cell Systems and Ethics in Biochemistry Leuven 07.09.2015 |
||
---|---|---|
9:00-10:00 | Registration and welcome tea/coffee | |
Morning Block | 10:00-10:10 | Welcome words by Prof. Johan Robben |
10:10-10:35 |
Home speaker: Vera van Noort
Center for Microbial and Plant Genetics "Lessons from systems biology of a minimal organism for synthetic biology" |
|
10:35-11:35 |
Keynote speaker: Victor Dillard
Chief Operating Officer & Founder, Desktop Genetics "Through synthetic biology to entrepreneurship" |
|
Presentation by the iGEM Teams | ||
11:40-11:50 | iGEM Paris-Saclay: "SafetE.coli" | |
11:55-12:05 | iGEM TU Eindhoven: "Click Coli" | |
12:05-13:05 | Lunch Break, networking | |
Early Afternoon Block | 13:05-14:05 |
Keynote speaker: Sebastian Maerkl
École Polytechnique Fédérale de Lausanne, LBNC "Cell-Free synthetic biology" |
14:05-14:30 |
Home speaker: Yves Peeters Laboratory of Biochemistry: Molecular and Structural Biology "Directed evolution of polymerases using synthetic biology methods" |
|
Presentation by the iGEM Teams | ||
14:35-14:45 | iGEM Amsterdam: "[Photo]Synthetic Romance" | |
14:50-15:00 |
|
|
15:05-15:20 | iGEM KU Leuven: "Spot E.Shape" | |
15:25-15:50 | Tea/Coffee break | |
Evening block | 15:50-16:00 | Introduction of the debate experts: Prof. Bart De Moor (KU
Leuven), Prof. Johan Robben (KU Leuven), Dr. Stijn Bruers (UGent), Prof. Vera
van Noort (KU Leuven), Victor Dillard (Desktop Genetics).
Moderator: Prof. Piet Van der Meer (Ugent/VUB) |
16:00-17:00 | A debate on the ethics in synthetic biology and biochemistry | |
17:00-17:10 | Closing words | |
17:10-19:00 | Wok and Talk Chinese dinner reception | |
19:30 | Leuven Kermis – Visit to Leuven Centrum for interested people |
Drinks and food
Beverages, lunch sandwiches and dinner-reception where be provided for all the participants free of charge.
Map
Contact
Address: Celestijnenlaan 200G room 00.08 - 3001 Heverlee
Telephone n°: +32(0)16 32 73 19
Mail: igem@chem.kuleuven.be