Team:KU Leuven/Modeling/Top

1-D continuous model

The Keller segel model type model we used is: $$\frac{\partial A}{\partial t} = D_a \bigtriangledown^2 A + k_A A(1 - \frac{A}{k_{p}}),$$ $$\frac{\partial B}{\partial t} = D_b \bigtriangledown^2 B + \bigtriangledown (X(B,H,R) \bigtriangledown R)+ k_B B(1 - \frac{B}{k_{p}}), $$ $$ \frac{\partial R}{\partial t} = D_r \bigtriangledown^2 B + k_r A - k_{lossH} R $$ $$\frac{\partial H}{\partial t} = D_h \bigtriangledown^2 B + k_h A - k_{lossR} H . $$ With:
$$ X(B,H,R) = \frac{-B K_{c1} H}{K_{c2} R}. $$ The model has been derived while looking at [1] and

References

Spatio-Temporal Patterns Generated by Salmonella typhimurium, D. E. Woodward, R. Tyson, M. R. Myerscough, J. D. Murray, E. 0.Budrene,l and H. C.Berg , Biophysical Journal Volume 68 May 1995 2181-2189