Difference between revisions of "Team:ETH Zurich/Modeling/AHL Module"

m
m
Line 16: Line 16:
 
\begin{align*}
 
\begin{align*}
 
\varnothing&\mathop{\xrightarrow{\hspace{4em}}}^{a_{\mathrm{LuxR}}} \text{LuxR}\\
 
\varnothing&\mathop{\xrightarrow{\hspace{4em}}}^{a_{\mathrm{LuxR}}} \text{LuxR}\\
\text{AHL} + \text{LuxR} &\mathop{\mathop{\xrightarrow{\hspace{4em}}}^{\xleftarrow{\hspace{4em}}}}_{k_{\mathrm{-LuxRAHL}}}^{k_{\mathrm{LuxRAHL}}} \text{LuxRAHL}\\
+
\text{AHL} + \text{LuxR} &\mathop{\mathop{\xrightarrow{\hspace{4em}}}^{\xleftarrow{\hspace{4em}}}}_{k_{\mathrm{LuxRAHL}}}^{k_{\mathrm{-LuxRAHL}}} \text{LuxRAHL}\\
 
&\mathop{\xrightarrow{\hspace{4em}}}^{\displaystyle\mathop{\downarrow}^{\text{LuxRAHL}}} \text{LuxI}\\
 
&\mathop{\xrightarrow{\hspace{4em}}}^{\displaystyle\mathop{\downarrow}^{\text{LuxRAHL}}} \text{LuxI}\\
 
\text{LuxI}&\mathop{\xrightarrow{\hspace{4em}}}^{a_{\mathrm{AHL}}}\text{AHL}+\text{LuxI}\\
 
\text{LuxI}&\mathop{\xrightarrow{\hspace{4em}}}^{a_{\mathrm{AHL}}}\text{AHL}+\text{LuxI}\\

Revision as of 10:04, 17 August 2015

"What I cannot create I do not understand."
- Richard Feynmann

AHL Module

Introduction

Chemical species

Name Description
AHL Signaling protein, Acyl homoserine lactone (30C6-HSL)
LuxR Regulator protein, that can bind to AHL to form a complex
LuxRAHL Complex of LuxR and AHL, activates transcription of LuxI
LuxI Autoinducer synthase
Aiia AHL-lactonase, N-Acyl Homoserine Lactone Lactonase

Reactions

\begin{align*} \varnothing&\mathop{\xrightarrow{\hspace{4em}}}^{a_{\mathrm{LuxR}}} \text{LuxR}\\ \text{AHL} + \text{LuxR} &\mathop{\mathop{\xrightarrow{\hspace{4em}}}^{\xleftarrow{\hspace{4em}}}}_{k_{\mathrm{LuxRAHL}}}^{k_{\mathrm{-LuxRAHL}}} \text{LuxRAHL}\\ &\mathop{\xrightarrow{\hspace{4em}}}^{\displaystyle\mathop{\downarrow}^{\text{LuxRAHL}}} \text{LuxI}\\ \text{LuxI}&\mathop{\xrightarrow{\hspace{4em}}}^{a_{\mathrm{AHL}}}\text{AHL}+\text{LuxI}\\ \text{LuxR}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{LuxR}}}\varnothing\\ \text{AHL}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{AHL}}}\varnothing\\ \text{LuxRAHL}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{LuxRAHL}}}\varnothing\\ \text{LuxI}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{LuxI}}}\varnothing\\ \text{Aiia}+\text{AHL}&\mathop{\xrightarrow{\hspace{4em}}}^{K_{\mathrm{M}},v_{\mathrm{Aiia}}}\text{Aiia}\\ \end{align*}

Equations

The equations are based on mass action kinetics and basic rate laws such as Hill equation.

Assumptions

  1. As LuxR is constitutively produced in this model, we considered that LuxR was constant. We used then the conservation of mass to derive the equations
  2. On the other hand, the binding and unbinding of LuxR to AHL is fast compared to the synthesis of LuxI. We used the quasi steady state approximation (QSSA)

Simplified equations

\begin{align*} [LuxRAHL]&= \frac{[AHL]\cdot LuxR_\mathrm{t}}{K_{\mathrm{d-LuxRAHL}}+[AHL]}\\ \frac{d[LuxI]}{dt}&=a_{\mathrm{LuxI}}k_{\mathrm{leaky}}(LuxR_\mathrm{t}-[LuxRAHL])+\frac{a_{\mathrm{LuxI}}\left(\frac{[LuxRAHL]}{K_{\mathrm{LuxRAHL}}}\right)^2}{1+\left(\frac{[LuxRAHL]}{K_{\mathrm{LuxRAHL}}}\right)^2}-d_{\mathrm{LuxI}}[LuxI]\\ \frac{d[AHL]}{dt}&=a_{\mathrm{AHL}}[LuxI]-d_{\mathrm{AHL}}[AHL]-\frac{v_\mathrm{Aiia}\cdot [AHL]}{K_{\mathrm{M}}+[AHL]}\\ \frac{d[GFP]}{dt}&=a_\mathrm{GFP}k_{\mathrm{leaky}}(LuxR_\mathrm{t}-[LuxRAHL])+\frac{a_\mathrm{GFP}\left(\frac{[LuxRAHL]}{K_{\mathrm{LuxRAHL}}}\right)^2}{1+\left(\frac{[LuxRAHL]}{K_{\mathrm{LuxRAHL}}}\right)^2}-d_{\mathrm{GFP}}[GFP]\\ K_\mathrm{d-LuxRAHL} &= \frac{k_\mathrm{-LuxRAHL}}{k_\mathrm{LuxRAHL}}\\ \end{align*}