Difference between revisions of "Team:Kent/Modeling"

Line 95: Line 95:
  
 
<p>  
 
<p>  
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
+
 
 
</p>
 
</p>
  
<a name="c2"></a><h3 align="center"> A </h3>
+
<a name="c2"></a><h3 align="center"> Observation Volume </h3>
  
 
  \[i \hbar \frac{\partial}{\partial t}\Psi = \hat H \Psi\]
 
  \[i \hbar \frac{\partial}{\partial t}\Psi = \hat H \Psi\]
  
 
<p>
 
<p>
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
+
We have taken a small proportion of the cell and the bulk outside of the cell and extrapolated it to represent the whole system.
</p>
+
</p><br><br>
 +
<p>The typical length of an E coli cell is \[L~2 \mu m] and the typical diameter, \[d~1 \mu m]. If we consider the cell to be composed of a cylinder of length \[l=L-d] and two hemispheres at each end then the volume of the sphere is:</p>
 +
<br><br>
 +
\[V_cell = V_cylinder + V_sphere]
 +
<br>
 +
\[V_cell = \pi  (\frac{d}{2})^2 (L-d)+ \frac{4}{3} \pi  (\frac{d}{2})^3 = 1.309 (\mu m)^3]
 +
<br>
 +
<p>The volume of the cell inside the observation box is</p>
 +
<br><br>
 +
\[V_ob = L_x L_y L_z = 0.08(\mu m)^3 ]
 +
<br><br>
 +
<p>From this we can work out the proportion of the volume of cell inside the observation box</p>
 +
<br><br>
 +
\[ \frac{V_ob}{V_cell } = 6.112% ]
 +
<br><br>
 +
<p>LIkewise fro the surface area of the cell</p>
 +
<br><br>
 +
\[A_cell = A_cylinder + A_sphere]
 +
<br><br>
 +
\[A_cell = \pi d(L-d) + 4 \pi (\frac{d}{2})^2 = 6.28 (\mu m)^2
 +
<br><br>
 +
<p>The proportion of the cell's surface area inside the observation box is: </p>
 +
<br><br>
 +
\[\frac{A_ob}{A_cell} = 2.54%]
 +
<br><br>
 
<a name="c3"></a><h3 align="center"> M</h3>
 
<a name="c3"></a><h3 align="center"> M</h3>
  

Revision as of 16:46, 6 September 2015


iGEM Kent 2015

Modeling

Modeling is important as it allows us to describe the system mathematically. If we change some of the parameters in our system we can see how this will affect the system, this is especially important when the some of the parameters are unknown. The main aim of our model is to demonstrate the production of our nanowires in an interactive and interesting way.



More to come soon...