Difference between revisions of "Team:Bielefeld-CeBiTec/Results/HeavyMetals"

Line 330: Line 330:
 
<h2><i>in vivo</i></h2></br>
 
<h2><i>in vivo</i></h2></br>
 
<p>In addition to these we constructed a sensor for lead detection. It consists of PbrR, the repressor, and the lead specific promoter PbrA. The promoter is regulated by the RcnR, which binds Pb-ions. As the former sensors this one encloses a sfGFP for detection via fluorescence. </p>
 
<p>In addition to these we constructed a sensor for lead detection. It consists of PbrR, the repressor, and the lead specific promoter PbrA. The promoter is regulated by the RcnR, which binds Pb-ions. As the former sensors this one encloses a sfGFP for detection via fluorescence. </p>
 +
 +
<p>Our lead sensor consists of parts of the chromosomal lead operon of <EM> Cupriavidusmetallidurans (Ralstoniametallidurans) </EM>. This operon includes the promoter PbrA (<a href="http://parts.igem.org/Part:BBa_K1758332" target="_blank"> BBa_K1758332 </a>) , which is regulated by the repressor pbrR. The PbrR belongs to the MerR family, of  metal-sensing regulatoryproteins, and is Pb2+-inducible. Our sensor system comprises PbrR (<a href="http://parts.igem.org/Part:BBa_K1758330" target="_blank"> BBa_K1758330 </a>), which is under the control of a constitutive Promoter and PbrA and a 5’ untranslated region, which controls the transcription of a sfGFP and increases the fluorescence. Fluorescence implemented by sfGFP protein is the measured output signal. </p>
  
 
<figure style="width: 600px">
 
<figure style="width: 600px">
Line 357: Line 359:
  
 
<p>One of the already existing sensors we use for our system is the mercury sensor consisting of MerR the activator and the mercury specific promoter MerT. The promoter is regulated by the MerR, which binds Hg-ions. Similar to the former sensors we added a sfGFP for detection via fluorescence. </p></br>
 
<p>One of the already existing sensors we use for our system is the mercury sensor consisting of MerR the activator and the mercury specific promoter MerT. The promoter is regulated by the MerR, which binds Hg-ions. Similar to the former sensors we added a sfGFP for detection via fluorescence. </p></br>
 +
 +
<p>For our mercury sensor we use parts of the mercury sensor constructed by iGEM team Peking 2010. The parts of iGEM team Peking 2010 consist of the mercury dependent Mer operon from <EM>shigella flexneri R100</EM> plasmid Tn21. The expression of the Mer operon is depends on the regulation by MerR its activator and promoter MerT. For our sensor we used the codon optimized activator (<a href="http://parts.igem.org/Part:BBa_K1758340" target="_blank">BBa_K1758340</a>), under control of a constitutive promoter, of iGEM Peking 2010 (<a href="http://parts.igem.org/Part:BBa_K346001" target="_blank">BBa_K346001</a>). Additionally to the activator of Peking 2010 we used the specific promoter MerT (<a href="http://parts.igem.org/Part:BBa_K346002" target="_blank">BBa_K346002</a>) from this team. For our sensor we added a 5’UTR behind this promoter to increase the fluorscence of the used reporter protein sfGFP.</p>
 +
 +
<p>For our mercury sensor we use parts of the mercury sensor constructed by iGEM team Peking 2010. The parts of iGEM team Peking 2010 consist of the mercury dependent Mer operon from <EM>shigella flexneri R100</EM> plasmid Tn21. The expression of the Mer operon is depends on the regulation by MerR its activator and promoter MerT. For our sensor we used the codon optimized activator (<a href="http://parts.igem.org/Part:BBa_K1758340" target="_blank">BBa_K1758340), under control of a constitutive promoter, of iGEM Peking 2010 (<a href="http://parts.igem.org/Part:BBa_K346001" target="_blank">BBa_K346001). Additionally to the activator of Peking 2010 we used the specific promoter MerT (<a href="http://parts.igem.org/Part:BBa_K346002" target="_blank">BBa_K346002) from this team. For our sensor we added a 5’UTR behind this promoter to increase the fluorscence of the used reporter protein sfGFP.</p>
  
  
Line 406: Line 412:
  
 
<p>In addition to these we aimed to construct a sensor for nickel detection. It consists of RcnR the repressor and the nickel specific promoter RcnA. The promoter is regulated by the RcnR, which binds Ni-ions. As the former sensors this one encloses a sfGFP for detection via Fluorescence.</p>
 
<p>In addition to these we aimed to construct a sensor for nickel detection. It consists of RcnR the repressor and the nickel specific promoter RcnA. The promoter is regulated by the RcnR, which binds Ni-ions. As the former sensors this one encloses a sfGFP for detection via Fluorescence.</p>
 +
 +
<p> Our Nickel biosensor consists of parts of the rcn-operon from <i> E. coli </i> which codes for a nickel- and cobalt-efflux system. This system is highly sensitive to nickel. In absence of nickel or cobalt RcnR binds to the operator  and inhibits the nickel responsive promoter. With Ni(II)-ions present  the repression of the promoter RcnA will be reversed, because the repressor RcnR binds nickel-ions and cannot attach to the DNA. For our biosensor we construct the part (<a href="http://parts.igem.org/Part:BBa_K1758353" target="_blank"> BBa_K1758353 </a>by using the basic construction showed in <Our biosensors >. For this part we used the repressor RcnR under control of a constitutive promoter (<a href="http://parts.igem.org/Part:BBa_K1758350" target="_blank"> BBa_K1758350 </a>) and the nickel specific promoter RcnA with a 5’UTR  in front of sfGFP (<a href="http://parts.igem.org/Part:BBa_K1758352" target="_blank"> BBa_K1758352 </a>) as reporter protein. </p>
  
 
<p>Our Nickel biosensor consists of parts of the rcn-operon from <i> E. coli </i> which codes for a nickel- and cobalt-efflux system. This system is highly sensitive to nickel. In absence of nickel or cobalt RcnR binds to the operator  and inhibits the nickel responsive promoter. With Ni(II)-ions present  the repression of the promoter RcnA will be reversed, because the repressor RcnR binds nickel-ions and cannot attach to the DNA. For our biosensor we construct the part (<a href="http://parts.igem.org/Part:BBa_K1758353" target="_blank"> BBa_K1758353 </a>by using the basic construction showed in <Our biosensors >. For this part we used the repressor RcnR under control of a constitutive promoter (<a href="http://parts.igem.org/Part:BBa_K1758350" target="_blank"> BBa_K1758350 </a>) and the nickel specific promoter RcnA with a 5’UTR  in front of sfGFP (<a href="http://parts.igem.org/Part:BBa_K1758352" target="_blank"> BBa_K1758352 </a>) as reporter protein. </p>
 
<p>Our Nickel biosensor consists of parts of the rcn-operon from <i> E. coli </i> which codes for a nickel- and cobalt-efflux system. This system is highly sensitive to nickel. In absence of nickel or cobalt RcnR binds to the operator  and inhibits the nickel responsive promoter. With Ni(II)-ions present  the repression of the promoter RcnA will be reversed, because the repressor RcnR binds nickel-ions and cannot attach to the DNA. For our biosensor we construct the part (<a href="http://parts.igem.org/Part:BBa_K1758353" target="_blank"> BBa_K1758353 </a>by using the basic construction showed in <Our biosensors >. For this part we used the repressor RcnR under control of a constitutive promoter (<a href="http://parts.igem.org/Part:BBa_K1758350" target="_blank"> BBa_K1758350 </a>) and the nickel specific promoter RcnA with a 5’UTR  in front of sfGFP (<a href="http://parts.igem.org/Part:BBa_K1758352" target="_blank"> BBa_K1758352 </a>) as reporter protein. </p>

Revision as of 21:38, 15 September 2015

iGEM Bielefeld 2015


Heavy Metals

Zusammenfassung in ganz wenigen Worten.

The different sensors we worked with were characterized in vivo as well as in vitro.



We tested the influence of each heavy metal on our sensors in vivo Therefore we used heavy metal concentrations based on heavy metal occurrences measured all over the world.


Adjusting the detection limit
Influence of heavy metals on the growth of E.coli KRX shown is the standard deviation of three biological replicates. For induction concentrations of 20 µg/L lead, 60 µg/L mercury, 60 µg/L chromium, 80 µg/L nickel, 40 mg/L copper which represent ten times of the WHO guideline were used.


E. colis growth. Moreover there is no significant difference between the curves with heavy metals and the controls. This first experiment showed us, in vivo characterization with these sensors under the tested heavy metal concentrations is possible. Most of our sensors were cultivated in the BioLector. Due to the accuracy of this device we could measure our sample in duplicates.



teststrip