Difference between revisions of "Team:elan vital korea/Project Overview"

 
(114 intermediate revisions by the same user not shown)
Line 59: Line 59:
 
}
 
}
 
#about {
 
#about {
     background: url(https://static.igem.org/mediawiki/2015/8/80/Experimentalbg.png) 50% 0 no-repeat fixed;
+
     background: url(https://static.igem.org/mediawiki/2015/9/9c/Newlightbg.jpg) 50% 0 no-repeat fixed;
 
     min-height:1000px;
 
     min-height:1000px;
 
height: 1000px;
 
height: 1000px;
Line 69: Line 69:
 
}
 
}
 
#maintext {
 
#maintext {
     background: url(https://static.igem.org/mediawiki/2015/1/1a/ExperimentalBG3.PNG) 50% 0 no-repeat fixed;
+
     background: url(https://static.igem.org/mediawiki/2015/9/9c/Newlightbg.jpg) 50% 0 no-repeat fixed;
 
     height: 1000px;
 
     height: 1000px;
 
min-height:1000px;
 
min-height:1000px;
Line 80: Line 80:
  
 
#maintext2 {
 
#maintext2 {
     background: url(https://static.igem.org/mediawiki/2015/b/bb/ExperimentalBG2.PNG) 50% 0 no-repeat fixed;
+
     background: url(https://static.igem.org/mediawiki/2015/9/9c/Newlightbg.jpg) 50% 0 no-repeat fixed;
 
     height: 1000px;
 
     height: 1000px;
 
min-height:1000px;
 
min-height:1000px;
Line 90: Line 90:
 
}
 
}
  
#maintext3 {
 
    background: url(https://static.igem.org/mediawiki/2015/1/1a/ExperimentalBG3.PNG) 50% 0 no-repeat fixed;
 
    height: 1000px;
 
min-height:1000px;
 
    margin: 0 auto;
 
    width: 100%;
 
    max-width: 1920px;
 
    position: relative;
 
    box-shadow: 0 0 50px rgba(0,0,0,0.8);
 
}
 
  
#maintext4 {
 
    background: url(https://static.igem.org/mediawiki/2015/b/bb/ExperimentalBG2.PNG) 50% 0 no-repeat fixed;
 
    height: 1000px;
 
min-height:1000px;
 
    margin: 0 auto;
 
    width: 100%;
 
    max-width: 1920px;
 
    position: relative;
 
    box-shadow: 0 0 50px rgba(0,0,0,0.8);
 
}
 
 
#maintext5 {
 
    background: url(https://static.igem.org/mediawiki/2015/1/1a/ExperimentalBG3.PNG) 50% 0 no-repeat fixed;
 
    height: 1000px;
 
min-height:1000px;
 
    margin: 0 auto;
 
    width: 100%;
 
    max-width: 1920px;
 
    position: relative;
 
    box-shadow: 0 0 50px rgba(0,0,0,0.8);
 
}
 
 
#maintext6 {
 
    background: url(https://static.igem.org/mediawiki/2015/b/bb/ExperimentalBG2.PNG) 50% 0 no-repeat fixed;
 
    height: 1000px;
 
min-height:1000px;
 
    margin: 0 auto;
 
    width: 100%;
 
    max-width: 1920px;
 
    position: relative;
 
    box-shadow: 0 0 50px rgba(0,0,0,0.8);
 
}
 
  
  
Line 146: Line 104:
  
 
#maintext2 article { background: url("#") no-repeat scroll center top transparent; height: 458px; position: absolute; text-indent: -9999px; top: 291px; width: 100%; }
 
#maintext2 article { background: url("#") no-repeat scroll center top transparent; height: 458px; position: absolute; text-indent: -9999px; top: 291px; width: 100%; }
 
#maintext3 article { background: url("#") no-repeat scroll center top transparent; height: 458px; position: absolute; text-indent: -9999px; top: 291px; width: 100%; }
 
  
  
Line 195: Line 151:
  
 
h4 {
 
h4 {
color:white;
+
color:black;
 
font-size: 24px;
 
font-size: 24px;
 
letter-spacing:1px;
 
letter-spacing:1px;
Line 210: Line 166:
  
 
p {
 
p {
font-size:16px;
+
font-size:18px;
line-height:180%;
+
line-height:160%;
 
}
 
}
  
Line 248: Line 204:
  
  
 +
.inner {
 +
width: 50%;
 +
height: auto;
 +
margin-left:25%;
 +
}
 +
 
</style>
 
</style>
  
Line 255: Line 217:
 
     <!-- Section #1 -->
 
     <!-- Section #1 -->
 
         <section id="home" data-speed="10" data-type="background">
 
         <section id="home" data-speed="10" data-type="background">
  <a name="top" id="top"></a>
+
            <a name="top" id="top"></a>
        <a href="#"><img class="igem" src="https://static.igem.org/mediawiki/2015/7/70/IGEM_Logo.gif"></a>
+
            <a href="#">
            <br>
+
                <img class="igem" src="https://static.igem.org/mediawiki/2015/7/70/IGEM_Logo.gif">
            <br>
+
            </a>
            <br>
+
                        <br><br><br><br><br><br><br>
            <br>
+
                    <div class="center;">
            <br>
+
            <a href="https://2015.igem.org/Team:Elan_Vital_Korea">
            <br>
+
                <img class="displayed" src="https://static.igem.org/mediawiki/2015/d/d5/ElanVital_Logo.png">
            <br>
+
            </a>
<div class="center;">
+
                <a href="https://2015.igem.org/Team:elan_vital_korea">
+
                    <img class="displayed" src="https://static.igem.org/mediawiki/2015/d/d5/ElanVital_Logo.png">
+
                </a>
+
 
                 <h4 style="text-align:center;">
 
                 <h4 style="text-align:center;">
 +
<font color="white">
 
                     PROJECT <br> -Project Overview-
 
                     PROJECT <br> -Project Overview-
 
                 </h4>
 
                 </h4>
                    <a href="#myAnchor" rel="" id="anchor1" class="anchorLink"><img class="displayed" src="https://static.igem.org/mediawiki/2015/d/d2/Scroll_arrow.png"></a>
+
</font>
 +
                  <a href="#myAnchor" rel="" id="anchor1" class="anchorLink"><img class="displayed" src="https://static.igem.org/mediawiki/2015/d/d2/Scroll_arrow.png"></a>
 
           </div>
 
           </div>
 
     </section>
 
     </section>
  
    <!-- Section #2 -->
 
        <section id="about" data-speed="10" data-type="background">
 
  
                        <h5 style="text-align:center;">
 
                                    <a name="myAnchor" id="myAnchor"></a><br><br><br><br><br><br><br><br><br><font color="white">PROJECT OVERVIEW</font></h5> <br><br><br>
 
<P style="text-align:center;">
 
<font color="white">
 
Bacteria acquiring resistance to antibiotics pose serious health problem globally. Following last year’s example, <br>
 
the project of Elan Vital Korea for this year also is related to MRSA.  This year, however, we have focused <br>
 
on early detection of MRSA infection using quorum sensing.  Below, we have briefly described the health threats <br>
 
caused by MRSA, and have explained the quorum sensing method.  Then, we have proceeded to the description <br>
 
of how we designed and implemented our experiments, and what results we have obtained.  Finally, we have briefly <br>
 
outlined the implication of our results and future plans. <br><br><br>
 
  
</font>
 
</p> 
 
  
<br>
 
<br>
 
<br><br><br><br>
 
<br>
 
<br>
 
<br>
 
<br>
 
<a href="#top" rel="" id="top" class="anchorLink"><img class="displayed" src="https://static.igem.org/mediawiki/2015/b/b3/Scroll_arrow_top.PNG"></a> 
 
<h6 style="text-align:center;">
 
<font color="white">
 
                  To The Top
 
</font>
 
                </h6>
 
  
  
</section>
+
    <!-- Section #2 -->
 
+
         <section id="about" data-speed="10" data-type="background">
 
+
            <h5 style="text-align:center;">
<!-- Section #3 -->
+
                <a name="myAnchor" id="myAnchor"></a>
         <section id="maintext" data-speed="10" data-type="background">
+
<br><br><br><br><br><br><br><br>
<br><br><br>
+
                    <font color="black">PROJECT OVERVIEW</font>
 
+
            </h5>
 
+
                        <br><br>
<font color="black">
+
<div class="inner">
<h5 style="text-align:center;">
+
                    <P style="text-align:left;">
Threats of Antibiotics-Resistant Bacteria
+
  <font color="black">
</h5>  
+
Antibiotic-resistant bacteria pose a serious problem for global medical community. Detecting antibiotic resistance as quickly as possible is crucial for determination of the correct treatment for patients and for setting up quarantines to prevent spreading. We hypothesized that it is possible to use quorum sensing (QS) to devise a rapid way for cells to report the existence of antibiotic-resistant bacteria.
<br><br><br>
+
                    </font>
<P style="text-align:center;">
+
                    </p>
Infection by antibiotic-resistant bacteria is a serious health threat worldwide including Korea and <br>
+
</div>
the United States of America. It is a serious threat primarily because, as the name suggests, <br>
+
bacteria have evolutionarily developed a resistance to antibiotics. It means, first of all, drugs don’t work.<br>
+
Furthermore, the spread of the antibiotic-resistant bacteria makes it more difficult to <br>
+
control or contain the spread of the infectious disease, because it undermines the effectiveness of treatment.<br>
+
And, it substantially increases the cost of healthcare, and the burden to society because it prolongs <br>
+
the treatment period and increases the likelihood of death. WHO declared that it “threatens the achievements of <br>
+
modern medicine” (Antimicrobial Resistance: Global Report on Surveillance 2014, WHO, 2014).  <br>
+
Antimicrobial resistance already causes 700,000 deaths every year, which number is expected to 10 million annually<br>
+
by 2050 (An international legal framework to address antimicrobial resistance, WHO, 2015).
+
</p>
+
</font>
+
<br><br>
+
<img class="displayed" src="https://static.igem.org/mediawiki/2015/7/74/Hr_black.jpg" width="80px" height="2px">
+
 
<br><br>
 
<br><br>
 +
                </h6>
  
<P style="text-align:center;">
+
<div class="inner">
<font color="black">
+
                    <P style="text-align:left;">
What makes the problem more pressing is that the data isbased on the reports of clinical samples from <br>
+
<font color="black">
laboratories, “predominantly in hospital settings” (Antimicrobial Resistance: Global Report on <br>
+
Here, we developed a reporter cell that expresses GFP in the presence of the QS signaling molecule acyl homoserine lactone (AHL). Our test cells (which act as a simulation of antibiotic-resistant bacteria) express lactonase, which breaks down AHL. In our experimental system, test cells should signify their presence by breaking down AHL and preventing GFP expression in reporter cells. Therefore, our project serves as a proof of principle and we hope that our work will serve as a basis for developing similar, more sophisticated quorum sensing-based detection systems for antibiotic-resistant bacteria in the future.
Surveillance 2014, WHO, 2014, p. 70), which means community-acquired (compared to health-care associated)<br>
+
infections and uncomplicated infections are underrepresented.
+
</font>
+
 
</p>
 
</p>
 
+
</div>
<br><br>
+
                </font>
 +
            <br><br>
  
 
<a href="#top" rel="" id="top" class="anchorLink"><img class="displayed" src="https://static.igem.org/mediawiki/2015/5/5b/Scroll_arrow_top_Black.png"></a>   
 
<a href="#top" rel="" id="top" class="anchorLink"><img class="displayed" src="https://static.igem.org/mediawiki/2015/5/5b/Scroll_arrow_top_Black.png"></a>   
Line 352: Line 271:
 
                   To The Top
 
                   To The Top
 
               </font> </h6>
 
               </font> </h6>
 +
     
 +
        </section>
  
</section>
 
 
 
<!-- Section #4 -->
 
        <section id="maintext2" data-speed="10" data-type="background">
 
      <section id="about" data-speed="10" data-type="background">
 
<br><br><br>
 
                        <h5 style="text-align:center;">
 
                                </a><font color="white">Existing Methods Used for Detection</font></h5> <br><br>
 
<P style="text-align:center;">
 
 
<font color="white">
 
<P style="text-align:center;">
 
CDC’s efforts at outsmarting the antibiotic resistance focuses on 4 core actions: detect, respond, prevent <br>
 
and discover.  The project is called AR Initiative (Detect and Protect Against Antibiotic <br>
 
Resistance Initiative), which is an integral part of the CDC strategy to target investment aimed at AR. <br>
 
Among the AR initiative, detection is the first step that impacts the whole controlling process. <br>
 
Detecting antibiotic resistance quickly and effectively is crucial for determination of the treatment methods<br>
 
for different patients as well as for quarantines to prevent it from becoming epidemic. <br>
 
Currently, several methods are used for the detection of the antibiotic resistance.  Most common and traditional <br>
 
method is using growth inhibition assays performed in broth or by agar disc diffusion.  <br>
 
For clinically critical bacteria, diagnostic laboratories perform phenotypic-based analyses using standardized <br>
 
susceptibility testing methods, usually in accordance with the guidelines published by the Clinical <br>
 
and Laboratory Standards Institute. <br><br>
 
</font>
 
</p>
 
 
 
 
<P style="text-align:center;">
 
<font color="white">
 
Using the culture-based approach, it can take 1—2 days to produce results for fast-growing bacteria such as <br>
 
Escherichia coli orSalmonella, but several weeks for slow-growing bacteria such as Mycobacterium tuberculosis. <br>
 
Moreover, culturing only works for a small fraction of microbes; although most pathogens can be cultured <br>
 
relatively easily thanks to years of accumulated experimental experiences, the vast majority of microbes cannot <br>
 
grow outside their host environment, including pathogens such as Chlamydia orTrypanosomes. <br><br>
 
 
Using newer molecular detection techniques for antibiotic resistance such as quantitative PCR (qPCR) or <br>
 
microarrays, we can determine the presence of specific resistance genes within hours, and we obtain improved <br>
 
diagnosis results.  However, these culture-independent approaches target well-known and well-studied<br>
 
pathogens or resistance-causing genes only, and cannot be easily used for broader spectrum screening. <br><br>
 
</font>
 
</p>
 
 
<br>
 
 
<a href="#top" rel="" id="top" class="anchorLink"><img class="displayed" src="https://static.igem.org/mediawiki/2015/b/b3/Scroll_arrow_top.PNG"></a> 
 
<h6 style="text-align:center;"> <font color="white">
 
                  To The Top
 
              </font> </h6>
 
</section>
 
 
 
<!-- Section #5 -->
 
        <section id="maintext3" data-speed="10" data-type="background">
 
<P style="text-align:center;">
 
<font color="black">
 
<br>
 
CDC dramatically innovated the detection process by adopting the Advanced Molecular Detection (AMD), <br>
 
which combines the latest pathogen identification technologies with bioinformatics and <br>
 
advanced epidemiology to more effectively understand, prevent and control infectious diseases.  <br>
 
Using those technologies, it is possible to rapidly look for a microbe's match among <br>
 
thousands of reference samples in the microbe library.  If no match is found, the whole genomic sequence <br>
 
of the microbe's DNA code can be taken, then quickly analyzed using disease detective works and <br>
 
bioinformatics to answer critical disease-response questions. However, this new method, while it sounds <br>
 
very interesting, is not to be completed until 2020, and still requires incubation, as well as being expensive.
 
</font>
 
</p>
 
 
<br><br>
 
<img class="displayed" src="https://static.igem.org/mediawiki/2015/6/6e/Hr_black.jpg" width="80px" height="2px">
 
<br><br>
 
 
 
<h5 style="text-align:center;">
 
<font color="black">
 
Our Hypothesis: Possibility of Using Quorum Sensing for Early Detection
 
</font>
 
</h5>
 
<br>
 
 
 
<P style="text-align:center;">
 
<font color="black">
 
Our team, Elan Vital Korea, addressed the problem of rapidly detecting antibiotic-resistant bacteria.<br>
 
We were interested in a rapid and efficient method of antibiotic resistance detection, and we believed that <br>
 
such a method could be engineered using quorum sensing.  Our hypothesis was that we would be able to <br>
 
use quorum sensing – a method bacteria use to communicate with each other – to make the cells quickly report<br>
 
the existence of antibiotic-resistant bacteria
 
<br><br>
 
 
By quorum sensing, bacteria can perform many cooperative functions, such as biofilm formation, antibiotic <br>
 
production, motility, swarming, virulence, and much more.  While most quorum sensing takes place <br>
 
between bacteria of the same species, there are cases of interspecies quorum sensing.  Auto-inducers affect <br>
 
the gene expression of the bacteria once they reach a certain concentration threshold.  Bacteria using quorum<br>
 
sensing usually produce small amounts of auto-inducers, so that the concentration of auto-inducers<br>
 
are affected by the concentration of the bacteria.  In other words, quorum sensing, in essence, regulates gene<br>
 
expression in response to cell density.  Using quorum sensing, bacteria are able to act in unison,<br>
 
as if they were a single organism.
 
<br><br>
 
</font>
 
</p>
 
 
<br><br>
 
 
<a href="#top" rel="" id="top" class="anchorLink"><img class="displayed" src="https://static.igem.org/mediawiki/2015/5/5b/Scroll_arrow_top_Black.png"></a> 
 
<h6 style="text-align:center;"> <font color="black">
 
                  To The Top
 
              </font> </h6>
 
</section>
 
 
 
 
 
 
<!-- Section #6 -->
 
        <section id="maintext4" data-speed="10" data-type="background">
 
<P style="text-align:center;">
 
<font color="white">
 
<br><br>
 
Quorum sensing is widely used by various bacteria for various functions, so each uses a slightly different <br>
 
auto-inducer so the signals are not mixed up.  In general, gram-negative bacteria use <br>
 
a class of molecules called N-acyl homoserine lactones, or AHL, while gram-positive bacteria use short <br>
 
processed polypeptides.  For example, the picture below represents the quorum sensing mechanism <br>
 
in the bacteria vibrio fisheri.  Vibrio fisheri is a bacteria that produces bioluminescence, <br>
 
and is famous for revealing quorum sensing for the first time.  Vibrio fisheri uses quorum sensing to produce<br>
 
light in high cell density, and researchers first discovered quorum sensing from examining <br>
 
vibrio fisheri. <br><br>
 
 
In vibrio fishri, quorum sensing involves LuxI and LuxR as well as AHL.  LuxI is the protein that produces AHL,<br> and LuxR forms a complex with AHL to affect the regulation of genes.  In this case, it <br>
 
produces luciferase, which produces bioluminescence.  Furthermore, the process also boosts the production <br>
 
of LuxI, which creates a positive feedback loop.  This AHL-LuxR quorum sensing mechanism is <br>
 
one of the most well known gram-negative quorum sensing pathways, and it can be engineered to affect almost<br>
 
any coding sequence we like.<br>
 
</font>
 
</p>
 
 
<br>
 
<img class="displayed" src="https://static.igem.org/mediawiki/2015/2/2e/Graphics-03-25.png">
 
<br>
 
 
<a href="#top" rel="" id="top" class="anchorLink"><img class="displayed" src="https://static.igem.org/mediawiki/2015/b/b3/Scroll_arrow_top.PNG"></a> 
 
<h6 style="text-align:center;"> <font color="white">
 
                  To The Top
 
              </font> </h6>
 
</section>
 
 
 
<!-- Section #7 -->
 
        <section id="maintext5" data-speed="10" data-type="background">
 
<P style="text-align:center;">
 
<font color="black">
 
<br>
 
For the project, we have developed a reporter cell that expresses GFP in the presence of the QS signaling <br>
 
molecule acyl homoserine lactone (AHL).  Our test cells (which act as a simulation of <br>
 
antibiotic-resistant bacteria) express lactonase, which breaks down AHL.  In our experimental system,<br>
 
test cells should signify their presence by breaking down AHL and preventing GFP expression<br>
 
in reporter cells.
 
</font>
 
</p>
 
 
<br><br>
 
<img class="displayed" src="https://static.igem.org/mediawiki/2015/6/6e/Hr_black.jpg" width="80px" height="2px">
 
<br><br>
 
 
 
<h5 style="text-align:center;">
 
<font color="black">
 
Experiment: Process and Results<br><br>
 
</font>
 
</h5>
 
 
 
<P style="text-align:center;">
 
<font color="black">
 
There are many ways of utilizing quorum sensing for medicinal use, and one of the most intuitive and <br>
 
most well-known methods is quorum quenching.  Quorum quenching takes advantage of <br>
 
the fact that quorum sensing also plays a role in  expressing virulence, and interferes with the quorum sensing <br>
 
that produces virulence.<br><br>
 
 
However, for our project this year, we decided to focus on engineering a detection method for <br>
 
antibiotic resistance. For the project, we created a test plasmid and a reporter plasmid.  We then transformed <br>
 
competent E. coli with the plasmids to produce a test cell and a reporter cell.  As shown <br>
 
in the picture below, the test cell produces lactonase, which breaks down AHL, a common auto-inducer in <br>
 
gram-negative bacteria.  And the reporter cell produces GFP (or luciferase) which creates <br>
 
a visible difference that we can detect.  Both plasmids were engineered using the BioBrick DNA recombination <br>
 
process.  With such a set up, it will be possible to detect the presence of the test cell, or lactonase.<br><br>
 
 
 
</font>
 
</p>
 
 
<br>
 
<br>
 
 
<a href="#top" rel="" id="top" class="anchorLink"><img class="displayed" src="https://static.igem.org/mediawiki/2015/5/5b/Scroll_arrow_top_Black.png"></a> 
 
<h6 style="text-align:center;"> <font color="black">
 
                  To The Top
 
              </font> </h6>
 
 
</section>
 
 
 
 
<!-- Section #8 -->
 
        <section id="maintext6" data-speed="10" data-type="background">
 
<P style="text-align:center;">
 
<font color="white">
 
<br>
 
For the confirmation of our hypothesis, we conducted some experiments.  Ideally, mixing AHL with the test cell <br>
 
will break down the AHL.  And, adding the reporter after that will not result in any fluorescence.<br>
 
But, if we do the same process with the control bacteria instead of the test cell, there will be fluorescence.<br><br>
 
 
As theorized, the control experiments produced fluorescence, but the experiments with the test cell produced no  fluorescence. <br><br>
 
</font>
 
</p>
 
 
<br><br>
 
<img class="displayed" src="https://static.igem.org/mediawiki/2015/9/9d/Graphics-26.png">
 
<br><br>
 
 
 
 
<a href="#top" rel="" id="top" class="anchorLink"><img class="displayed" src="https://static.igem.org/mediawiki/2015/b/b3/Scroll_arrow_top.PNG"></a> 
 
<h6 style="text-align:center;"> <font color="white">
 
                  To The Top
 
              </font> </h6>
 
  
</section>
 
  
  

Latest revision as of 17:40, 17 September 2015








PROJECT
-Project Overview-









PROJECT OVERVIEW


Antibiotic-resistant bacteria pose a serious problem for global medical community. Detecting antibiotic resistance as quickly as possible is crucial for determination of the correct treatment for patients and for setting up quarantines to prevent spreading. We hypothesized that it is possible to use quorum sensing (QS) to devise a rapid way for cells to report the existence of antibiotic-resistant bacteria.



Here, we developed a reporter cell that expresses GFP in the presence of the QS signaling molecule acyl homoserine lactone (AHL). Our test cells (which act as a simulation of antibiotic-resistant bacteria) express lactonase, which breaks down AHL. In our experimental system, test cells should signify their presence by breaking down AHL and preventing GFP expression in reporter cells. Therefore, our project serves as a proof of principle and we hope that our work will serve as a basis for developing similar, more sophisticated quorum sensing-based detection systems for antibiotic-resistant bacteria in the future.



To The Top