Difference between revisions of "Team:elan vital korea/Project Overview"

 
(81 intermediate revisions by the same user not shown)
Line 49: Line 49:
  
 
#home {
 
#home {
     background: url(https://static.igem.org/mediawiki/2015/6/66/HumanPracticeBG.png) 50% 0 no-repeat fixed;
+
     background: url(https://static.igem.org/mediawiki/2015/8/87/ElanVitalKorea_bg_3.png) 50% 0 no-repeat fixed;
 
min-height:1000px;
 
min-height:1000px;
 
     height: 1000px;   
 
     height: 1000px;   
Line 59: Line 59:
 
}
 
}
 
#about {
 
#about {
     background: url(https://static.igem.org/mediawiki/2015/8/80/Experimentalbg.png) 50% 0 no-repeat fixed;
+
     background: url(https://static.igem.org/mediawiki/2015/9/9c/Newlightbg.jpg) 50% 0 no-repeat fixed;
 
     min-height:1000px;
 
     min-height:1000px;
 
height: 1000px;
 
height: 1000px;
Line 69: Line 69:
 
}
 
}
 
#maintext {
 
#maintext {
     background: url(https://static.igem.org/mediawiki/2015/1/1a/ExperimentalBG3.PNG) 50% 0 no-repeat fixed;
+
     background: url(https://static.igem.org/mediawiki/2015/9/9c/Newlightbg.jpg) 50% 0 no-repeat fixed;
 
     height: 1000px;
 
     height: 1000px;
 
min-height:1000px;
 
min-height:1000px;
Line 80: Line 80:
  
 
#maintext2 {
 
#maintext2 {
     background: url(https://static.igem.org/mediawiki/2015/b/bb/ExperimentalBG2.PNG) 50% 0 no-repeat fixed;
+
     background: url(https://static.igem.org/mediawiki/2015/9/9c/Newlightbg.jpg) 50% 0 no-repeat fixed;
 
     height: 1000px;
 
     height: 1000px;
 
min-height:1000px;
 
min-height:1000px;
Line 151: Line 151:
  
 
h4 {
 
h4 {
color:white;
+
color:black;
 
font-size: 24px;
 
font-size: 24px;
 
letter-spacing:1px;
 
letter-spacing:1px;
Line 162: Line 162:
 
letter-spacing:1px;
 
letter-spacing:1px;
 
line-height:25px;
 
line-height:25px;
color:white;
 
 
}
 
}
  
  
 
p {
 
p {
font-size:16px;
+
font-size:18px;
line-height:180%;
+
line-height:160%;
 
}
 
}
  
Line 205: Line 204:
  
  
 +
.inner {
 +
width: 50%;
 +
height: auto;
 +
margin-left:25%;
 +
}
 +
 
</style>
 
</style>
  
Line 218: Line 223:
 
                         <br><br><br><br><br><br><br>
 
                         <br><br><br><br><br><br><br>
 
                     <div class="center;">
 
                     <div class="center;">
             <a href="https://2015.igem.org/Team:elan_vital_korea">
+
             <a href="https://2015.igem.org/Team:Elan_Vital_Korea">
 
                 <img class="displayed" src="https://static.igem.org/mediawiki/2015/d/d5/ElanVital_Logo.png">
 
                 <img class="displayed" src="https://static.igem.org/mediawiki/2015/d/d5/ElanVital_Logo.png">
 
             </a>
 
             </a>
 
                 <h4 style="text-align:center;">
 
                 <h4 style="text-align:center;">
 +
<font color="white">
 
                     PROJECT <br> -Project Overview-
 
                     PROJECT <br> -Project Overview-
 
                 </h4>
 
                 </h4>
                    <a href="#myAnchor" rel="" id="anchor1" class="anchorLink"><img class="displayed" src="https://static.igem.org/mediawiki/2015/d/d2/Scroll_arrow.png"></a>
+
</font>
 +
                  <a href="#myAnchor" rel="" id="anchor1" class="anchorLink"><img class="displayed" src="https://static.igem.org/mediawiki/2015/d/d2/Scroll_arrow.png"></a>
 
           </div>
 
           </div>
 
     </section>
 
     </section>
Line 237: Line 244:
 
             <h5 style="text-align:center;">
 
             <h5 style="text-align:center;">
 
                 <a name="myAnchor" id="myAnchor"></a>
 
                 <a name="myAnchor" id="myAnchor"></a>
<br><br>
+
<br><br><br><br><br><br><br><br>
                     <font color="white">PROJECT OVERVIEW</font>
+
                     <font color="black">PROJECT OVERVIEW</font>
 
             </h5>
 
             </h5>
 
                         <br><br>
 
                         <br><br>
                     <P style="text-align:center;">
+
<div class="inner">
                        <font color="white">
+
                     <P style="text-align:left;">
Bacteria acquiring resistance to antibiotics pose serious health problem globally. Following last year’s example, <br>
+
<font color="black">
the project of Elan Vital Korea for this year also is related to MRSA.  This year, however, we have focused <br>
+
Antibiotic-resistant bacteria pose a serious problem for global medical community. Detecting antibiotic resistance as quickly as possible is crucial for determination of the correct treatment for patients and for setting up quarantines to prevent spreading. We hypothesized that it is possible to use quorum sensing (QS) to devise a rapid way for cells to report the existence of antibiotic-resistant bacteria.
on early detection of MRSA infection using quorum sensing.  Below, we have briefly described the health threats <br>
+
caused by MRSA, and have explained the quorum sensing method.  Then, we have proceeded to the description <br>
+
of how we designed and implemented our experiments, and what results we have obtained. Finally, we have briefly <br>
+
outlined the implication of our results and future plans. <br><br><br>
+
 
                     </font>
 
                     </font>
 
                     </p>   
 
                     </p>   
<img class="displayed" src="https://static.igem.org/mediawiki/2015/6/6e/Hr_white.jpg" width="80px" height="2px">
+
</div>
 
<br><br>
 
<br><br>
  <h5 style="text-align:center;">
 
                <font color="white">
 
Threats of Antibiotics-Resistant Bacteria
 
                    </h5>
 
            <br><br>
 
                    <P style="text-align:center;">
 
Infection by antibiotic-resistant bacteria is a serious health threat worldwide including Korea and <br>
 
the United States of America.  It is a serious threat primarily because, as the name suggests, <br>
 
bacteria have evolutionarily developed a resistance to antibiotics.  It means, first of all, drugs don’t work.<br>
 
Furthermore, the spread of the antibiotic-resistant bacteria makes it more difficult to <br>
 
control or contain the spread of the infectious disease, because it undermines the effectiveness of treatment.<br>
 
And, it substantially increases the cost of healthcare, and the burden to society because it prolongs <br>
 
the treatment period and increases the likelihood of death. WHO declared that it “threatens the achievements of <br>
 
modern medicine” (Antimicrobial Resistance: Global Report on Surveillance 2014, WHO, 2014).  <br>
 
Antimicrobial resistance already causes 700,000 deaths every year, which number is expected to 10 million annually<br>
 
by 2050 (An international legal framework to address antimicrobial resistance, WHO, 2015).
 
</p>
 
                </font>
 
            <br><br>
 
 
 
                <a href="#top" rel="" id="top" class="anchorLink"><img class="displayed" src="https://static.igem.org/mediawiki/2015/b/b3/Scroll_arrow_top.PNG"></a> 
 
            <h6 style="text-align:center;">
 
                        <font color="white">
 
                          To The Top
 
                        </font>
 
 
                 </h6>
 
                 </h6>
        </section>
 
  
 
+
<div class="inner">
 
+
                     <P style="text-align:left;">
 
+
<font color="black">
 
+
Here, we developed a reporter cell that expresses GFP in the presence of the QS signaling molecule acyl homoserine lactone (AHL). Our test cells (which act as a simulation of antibiotic-resistant bacteria) express lactonase, which breaks down AHL. In our experimental system, test cells should signify their presence by breaking down AHL and preventing GFP expression in reporter cells. Therefore, our project serves as a proof of principle and we hope that our work will serve as a basis for developing similar, more sophisticated quorum sensing-based detection systems for antibiotic-resistant bacteria in the future.
 
+
    <!-- Section #3 -->
+
        <section id="maintext" data-speed="10" data-type="background">  
+
            <br><br><br>
+
               
+
                 
+
 
+
                     <P style="text-align:center;">
+
                <font color="black">
+
What makes the problem more pressing is that the data isbased on the reports of clinical samples from <br>
+
laboratories, “predominantly in hospital settings” (Antimicrobial Resistance: Global Report on <br>
+
Surveillance 2014, WHO, 2014, p. 70), which means community-acquired (compared to health-care associated)<br>
+
infections and uncomplicated infections are underrepresented.
+
                </font>
+
                    </p>
+
<br><br>
+
                <a href="#top" rel="" id="top" class="anchorLink">
+
                    <img class="displayed" src="https://static.igem.org/mediawiki/2015/5/5b/Scroll_arrow_top_Black.png"></a> 
+
                <h6 style="text-align:center;">
+
                    <font color="black">
+
                      To The Top
+
                  </font>
+
                </h6>
+
        </section>
+
 
+
 
+
 
+
 
+
 
+
 
+
    <!-- Section #4 -->
+
        <section id="maintext2" data-speed="10" data-type="background">
+
<br><br><br>
+
                        <h5 style="text-align:center;">
+
                                </a><font color="white">
+
Existing Methods Used for Detection</font>
+
                        </h5>
+
<br><br>
+
 
+
<P style="text-align:center;">
+
    <font color="white">
+
CDC’s efforts at outsmarting the antibiotic resistance focuses on 4 core actions: detect, respond, prevent <br>
+
and discover. The project is called AR Initiative (Detect and Protect Against Antibiotic <br>
+
Resistance Initiative), which is an integral part of the CDC strategy to target investment aimed at AR. <br>
+
Among the AR initiative, detection is the first step that impacts the whole controlling process. <br>
+
Detecting antibiotic resistance quickly and effectively is crucial for determination of the treatment methods<br>
+
for different patients as well as for quarantines to prevent it from becoming epidemic. <br>
+
Currently, several methods are used for the detection of the antibiotic resistance.  Most common and traditional <br>
+
method is using growth inhibition assays performed in broth or by agar disc diffusion.  <br>
+
For clinically critical bacteria, diagnostic laboratories perform phenotypic-based analyses using standardized <br>
+
susceptibility testing methods, usually in accordance with the guidelines published by the Clinical <br>
+
and Laboratory Standards Institute. <br><br>
+
    </font>
+
 
</p>
 
</p>
 
+
</div>
 
+
<P style="text-align:center;">
+
    <font color="white">
+
Using the culture-based approach, it can take 1—2 days to produce results for fast-growing bacteria such as <br>
+
Escherichia coli orSalmonella, but several weeks for slow-growing bacteria such as Mycobacterium tuberculosis. <br>
+
Moreover, culturing only works for a small fraction of microbes; although most pathogens can be cultured <br>
+
relatively easily thanks to years of accumulated experimental experiences, the vast majority of microbes cannot <br>
+
grow outside their host environment, including pathogens such as Chlamydia orTrypanosomes. <br><br>
+
 
+
Using newer molecular detection techniques for antibiotic resistance such as quantitative PCR (qPCR) or <br>
+
microarrays, we can determine the presence of specific resistance genes within hours, and we obtain improved <br>
+
diagnosis results.  However, these culture-independent approaches target well-known and well-studied<br>
+
pathogens or resistance-causing genes only, and cannot be easily used for broader spectrum screening. <br><br>
+
    </font>
+
</p>
+
 
+
<br>
+
 
+
            <a href="#top" rel="" id="top" class="anchorLink">
+
                <img class="displayed" src="https://static.igem.org/mediawiki/2015/b/b3/Scroll_arrow_top.PNG"></a> 
+
            <h6 style="text-align:center;">
+
                <font color="white">
+
                      To The Top
+
 
                 </font>
 
                 </font>
             </h6>
+
             <br><br>
        </section>
+
  
 
+
<a href="#top" rel="" id="top" class="anchorLink"><img class="displayed" src="https://static.igem.org/mediawiki/2015/5/5b/Scroll_arrow_top_Black.png"></a>   
 
+
<h6 style="text-align:center;"> <font color="black">
 
+
                  To The Top
 
+
              </font> </h6>
 
+
     
    <!-- Section #5 -->
+
        <section id="maintext" data-speed="10" data-type="background">
+
            <P style="text-align:center;">
+
                <font color="black">
+
                    <br>
+
CDC dramatically innovated the detection process by adopting the Advanced Molecular Detection (AMD), <br>
+
which combines the latest pathogen identification technologies with bioinformatics and <br>
+
advanced epidemiology to more effectively understand, prevent and control infectious diseases.  <br>
+
Using those technologies, it is possible to rapidly look for a microbe's match among <br>
+
thousands of reference samples in the microbe library.  If no match is found, the whole genomic sequence <br>
+
of the microbe's DNA code can be taken, then quickly analyzed using disease detective works and <br>
+
bioinformatics to answer critical disease-response questions. However, this new method, while it sounds <br>
+
very interesting, is not to be completed until 2020, and still requires incubation, as well as being expensive.        <br><br>
+
</font>
+
</p>
+
 
+
                    <br><br>
+
                        <img class="displayed" src="https://static.igem.org/mediawiki/2015/6/6e/Hr_black.jpg" width="80px" height="2px">
+
                    <br><br>
+
 
+
 
+
                        <h5 style="text-align:center;">
+
                            <font color="black">
+
Our Hypothesis: Possibility of Using Quorum Sensing for Early Detection
+
                            </font>
+
                        </h5>
+
                    <br><br>
+
 
+
 
+
<P style="text-align:center;">
+
                            <font color="black">
+
Our team, Elan Vital Korea, addressed the problem of rapidly detecting antibiotic-resistant bacteria.<br>
+
We were interested in a rapid and efficient method of antibiotic resistance detection, and we believed that <br>
+
such a method could be engineered using quorum sensing.  Our hypothesis was that we would be able to <br>
+
use quorum sensing – a method bacteria use to communicate with each other – to make the cells quickly report<br>
+
the existence of antibiotic-resistant bacteria
+
                    <br><br><br>
+
                            </font>
+
</p>
+
<br>
+
                        <a href="#top" rel="" id="top" class="anchorLink"><img class="displayed" src="https://static.igem.org/mediawiki/2015/5/5b/Scroll_arrow_top_Black.png"></a>   
+
                            <h6 style="text-align:center;">
+
                                <font color="black">
+
To The Top
+
                                </font>
+
                            </h6>
+
 
         </section>
 
         </section>
  
  <!-- Section #6 -->
 
        <section id="maintext2" data-speed="10" data-type="background">
 
        </section>
 
  
    <!-- Section #7 -->
 
        <section id="maintext" data-speed="10" data-type="background">
 
        </section>
 
  
    <!-- Section #8 -->
 
        <section id="maintext2" data-speed="10" data-type="background">
 
        </section>
 
  
  

Latest revision as of 17:40, 17 September 2015








PROJECT
-Project Overview-









PROJECT OVERVIEW


Antibiotic-resistant bacteria pose a serious problem for global medical community. Detecting antibiotic resistance as quickly as possible is crucial for determination of the correct treatment for patients and for setting up quarantines to prevent spreading. We hypothesized that it is possible to use quorum sensing (QS) to devise a rapid way for cells to report the existence of antibiotic-resistant bacteria.



Here, we developed a reporter cell that expresses GFP in the presence of the QS signaling molecule acyl homoserine lactone (AHL). Our test cells (which act as a simulation of antibiotic-resistant bacteria) express lactonase, which breaks down AHL. In our experimental system, test cells should signify their presence by breaking down AHL and preventing GFP expression in reporter cells. Therefore, our project serves as a proof of principle and we hope that our work will serve as a basis for developing similar, more sophisticated quorum sensing-based detection systems for antibiotic-resistant bacteria in the future.



To The Top