Difference between revisions of "Team:Bielefeld-CeBiTec/Results/HeavyMetals"

Line 339: Line 339:
 
<p>Our sensor for copper detection consists of CueR a MerR like activator and the copper specific promoter CopAP. The promoter is regulated by CueR, which binds Cu2+-ions. We also used a sfGFP behind the promoter for detection trough a fluorescence signal.</p>  
 
<p>Our sensor for copper detection consists of CueR a MerR like activator and the copper specific promoter CopAP. The promoter is regulated by CueR, which binds Cu2+-ions. We also used a sfGFP behind the promoter for detection trough a fluorescence signal.</p>  
  
<p>For our copper sensor we used the native operator of cooper homeostasis from <i> E.coli </i> K12. And constructed a part (BBa_K1758324) which was constructed  using the basic construction showed in <a href="https://2015.igem.org/Team:Bielefeld-CeBiTec/Project/HeavyMetals" target="_blank">Our biosensors</a>.This operator includes the promoter (copAP), which is regulated by the repressor CueR. This is an important part for the aerobic copper tolerance. In BBa_K1758324 we  combined the codon optimized CueR (<a href="http://parts.igem.org/Part:BBa_K1758320" target="_blank">BBa_K1758320</a>) under the control of a constitutive promoter with CopAP and sfGFP (<a href="http://parts.igem.org/Part:BBa_K1758321" target="_blank">BBa_K1758321</a>) for measuring output signals. Through the addition of a 5’UTR before the sfGFP we optimized the expression of sfGFP and increased fluorescence. </p>
+
<p>For our copper sensor we used the native operator of cooper homeostasis from <i> E.coli </i> K12. And constructed a part (BBa_K1758324) which was constructed  using the basic construction showed in <a href="https://2015.igem.org/Team:Bielefeld-CeBiTec/Project/HeavyMetals" target="_blank">Our biosensors</a>.This operator includes the promoter (copAP), which is regulated by the repressor CueR. This is an important part for the aerobic copper tolerance. In BBa_K1758324 we  combined the codon optimized CueR (<a href="http://parts.igem.org/Part:BBa_K1758320" target="_blank">BBa_K1758320</a>) under the control of a constitutive promoter with CopAP and sfGFP (<a href="http://parts.igem.org/Part:BBa_K1758321" target="_blank">BBa_K1758321</a>) for measuring output signals. Through the addition of a 5’UTR before the sfGFP we optimized the expression of sfGFP and increased fluorescence. </p>
  
 
        
 
        
Line 461: Line 461:
 
<p>In addition to these we constructed a sensor for lead detection. It consists of PbrR, the repressor, and the lead specific promoter PbrA. The promoter is regulated by the RcnR, which binds Pb-ions. As the former sensors this one encloses a sfGFP for detection via fluorescence. </p>
 
<p>In addition to these we constructed a sensor for lead detection. It consists of PbrR, the repressor, and the lead specific promoter PbrA. The promoter is regulated by the RcnR, which binds Pb-ions. As the former sensors this one encloses a sfGFP for detection via fluorescence. </p>
  
<p>Our lead sensor consists of parts of the chromosomal lead operon of <EM> Cupriavidusmetallidurans (Ralstoniametallidurans) </EM>. This operon includes the promoter PbrA (<a href="http://parts.igem.org/Part:BBa_K1758332" target="_blank">BBa_K1758332 </a>) , which is regulated by the repressor pbrR. The PbrR belongs to the MerR family, of  metal-sensing regulatoryproteins, and is Pb2+-inducible. Our sensor system comprises PbrR (<a href="http://parts.igem.org/Part:BBa_K1758330" target="_blank"> BBa_K1758330 </a>), which is under the control of a constitutive Promoter and PbrA and a 5’ untranslated region, which controls the transcription of a sfGFP and increases the fluorescence. Fluorescence implemented by sfGFP protein is the measured output signal. </p>
+
<p>Our lead sensor consists of parts of the chromosomal lead operon of <EM> Cupriavidusmetallidurans (Ralstoniametallidurans) </EM>. This operon includes the promoter PbrA (<a href="http://parts.igem.org/Part:BBa_K1758332" target="_blank">BBa_K1758332 </a>) , which is regulated by the repressor pbrR. The PbrR belongs to the MerR family, of  metal-sensing regulatoryproteins, and is Pb2+-inducible. Our sensor system comprises PbrR (<a href="http://parts.igem.org/Part:BBa_K1758330" target="_blank">BBa_K1758330 </a>), which is under the control of a constitutive Promoter and PbrA and a 5’ untranslated region, which controls the transcription of a sfGFP and increases the fluorescence. Fluorescence implemented by sfGFP protein is the measured output signal. </p>
  
 
  <figure style="width: 600px">
 
  <figure style="width: 600px">
 
<a href="https://static.igem.org/mediawiki/2015/a/a3/Bielefeld-CebiTec_in_vivo_Lead.jpeg" data-lightbox="heavymetals" data-title="  "><img src="https://static.igem.org/mediawiki/2015/a/a3/Bielefeld-CebiTec_in_vivo_Lead.jpeg" alt="genetical approach"></a>
 
<a href="https://static.igem.org/mediawiki/2015/a/a3/Bielefeld-CebiTec_in_vivo_Lead.jpeg" data-lightbox="heavymetals" data-title="  "><img src="https://static.igem.org/mediawiki/2015/a/a3/Bielefeld-CebiTec_in_vivo_Lead.jpeg" alt="genetical approach"></a>
<figcaption>Construct  konst.Prom + PbrR+CopAP-UTR-sfGFP <a href="http://parts.igem.org/Part:BBa_K1758334" target="_blank"> BBa_K1758334</a> consisting of konst.Prom + PbrR <a href="http://parts.igem.org/Part:BBa_K1758330" target="_blank"> BBa_K17583230</a> and PbrA-UTR-sfGF <a href="http://parts.igem.org/Part:BBa_K1758333" target="_blank"> BBa_K1758333</a> used for<i>in vivo</i> characterization.</figcaption>
+
<figcaption>Construct  konst.Prom + PbrR+CopAP-UTR-sfGFP <a href="http://parts.igem.org/Part:BBa_K1758334" target="_blank">BBa_K1758334</a> consisting of konst.Prom + PbrR <a href="http://parts.igem.org/Part:BBa_K1758330" target="_blank">BBa_K17583230</a> and PbrA-UTR-sfGF <a href="http://parts.igem.org/Part:BBa_K1758333" target="_blank">BBa_K1758333</a> used for<i>in vivo</i> characterization.</figcaption>
 
</figure>
 
</figure>
  
<figure style="width: 600px">
+
<div class="row">
 +
    <div class="col-md-6 text-center" style="margin-bottom: 50px"><figure style="width: 600px">
 
<a href="http://https://static.igem.org/mediawiki/2015/d/d5/Bielefeld-CeBiTec_Biolector_lead.jpg" data-lightbox="heavymetals" data-title="Time course of the induction of a lead biosensor with sfGFP for different lead concentrations in vivo. The data are measured with BioLector and normalized on OD600. Error bars represent the standard deviation of two biological replicates. "><img src="https://static.igem.org/mediawiki/2015/d/d5/Bielefeld-CeBiTec_Biolector_lead.jpg" alt="Adjusting the detection limit"></a>
 
<a href="http://https://static.igem.org/mediawiki/2015/d/d5/Bielefeld-CeBiTec_Biolector_lead.jpg" data-lightbox="heavymetals" data-title="Time course of the induction of a lead biosensor with sfGFP for different lead concentrations in vivo. The data are measured with BioLector and normalized on OD600. Error bars represent the standard deviation of two biological replicates. "><img src="https://static.igem.org/mediawiki/2015/d/d5/Bielefeld-CeBiTec_Biolector_lead.jpg" alt="Adjusting the detection limit"></a>
 
<figcaption>Time course of the induction of a lead biosensor with sfGFP for different lead concentrations in vivo. The data are measured with BioLector and normalized on OD600. Error bars represent the standard deviation of two biological replicates. </figcaption>
 
<figcaption>Time course of the induction of a lead biosensor with sfGFP for different lead concentrations in vivo. The data are measured with BioLector and normalized on OD600. Error bars represent the standard deviation of two biological replicates. </figcaption>
 
</figure>
 
</figure>
 
+
</div>
<figure style="width: 600px">
+
<div class="row">
 +
    <div class="col-md-6 text-center" style="margin-bottom: 50px"><figure style="width: 600px">
 
<a href="https://static.igem.org/mediawiki/2015/a/aa/Bielefeld-CeBiTec_Biolector_lead_Balkendiagramm.jpeg" data-lightbox="heavymetals" data-title="Fluorescence levels at three different stages of cultivation. Shown are levels after 60 minutes, 150 minutes and 650 minutes. Error bars represent the standard deviation of three biological replicates."><img src="https://static.igem.org/mediawiki/2015/a/aa/Bielefeld-CeBiTec_Biolector_lead_Balkendiagramm.jpeg" alt="Adjusting the detection limit"></a>
 
<a href="https://static.igem.org/mediawiki/2015/a/aa/Bielefeld-CeBiTec_Biolector_lead_Balkendiagramm.jpeg" data-lightbox="heavymetals" data-title="Fluorescence levels at three different stages of cultivation. Shown are levels after 60 minutes, 150 minutes and 650 minutes. Error bars represent the standard deviation of three biological replicates."><img src="https://static.igem.org/mediawiki/2015/a/aa/Bielefeld-CeBiTec_Biolector_lead_Balkendiagramm.jpeg" alt="Adjusting the detection limit"></a>
 
<figcaption>Fluorescence levels at three different stages of cultivation. Shown are levels after 60 minutes, 150 minutes and 650 minutes. Error bars represent the standard deviation of three biological replicates.</figcaption>
 
<figcaption>Fluorescence levels at three different stages of cultivation. Shown are levels after 60 minutes, 150 minutes and 650 minutes. Error bars represent the standard deviation of three biological replicates.</figcaption>
 
</figure>
 
</figure>
 +
</div>
 +
</div>
  
 
<p> The differences between inductions with various lead concentrations are really slight therefore this sensor needs further optimization which was not possible in this limited time. But as there is a fluorescence response to lead this sensor has the potential work as expected. In the future a characterization in CFPS systems would be interesting. </p>
 
<p> The differences between inductions with various lead concentrations are really slight therefore this sensor needs further optimization which was not possible in this limited time. But as there is a fluorescence response to lead this sensor has the potential work as expected. In the future a characterization in CFPS systems would be interesting. </p>
Line 502: Line 506:
 
<figure style="width: 600px">
 
<figure style="width: 600px">
 
<a href="https://static.igem.org/mediawiki/2015/0/0d/Bielefeld-CebiTec_in_vivo_Mercury.jpeg" data-lightbox="heavymetals" data-title=" Construct  konst.Prom + MerR+MerT-UTR-sfGFP consisting of konst.Prom + MerR and MerT-UTR-sfGF used for<i>in vivo</i> characterization. "><img src="https://static.igem.org/mediawiki/2015/0/0d/Bielefeld-CebiTec_in_vivo_Mercury.jpeg"></a>
 
<a href="https://static.igem.org/mediawiki/2015/0/0d/Bielefeld-CebiTec_in_vivo_Mercury.jpeg" data-lightbox="heavymetals" data-title=" Construct  konst.Prom + MerR+MerT-UTR-sfGFP consisting of konst.Prom + MerR and MerT-UTR-sfGF used for<i>in vivo</i> characterization. "><img src="https://static.igem.org/mediawiki/2015/0/0d/Bielefeld-CebiTec_in_vivo_Mercury.jpeg"></a>
<figcaption>Construct  konst.Prom + MerR+MerT-UTR-sfGFP <a href="http://parts.igem.org/Part:BBa_K1758344" target="_blank"> BBa_K1758344</a> consisting of konst.Prom + MerR <a href="http://parts.igem.org/Part:BBa_K1758340" target="_blank"> BBa_K1758340</a> and MerT-UTR-sfGF <a href="http://parts.igem.org/Part:BBa_K1758342" target="_blank"> BBa_K1758342</a> used for<i>in vivo</i> characterization.</figcaption>
+
<figcaption>Construct  konst.Prom + MerR+MerT-UTR-sfGFP <a href="http://parts.igem.org/Part:BBa_K1758344" target="_blank">BBa_K1758344</a> consisting of konst.Prom + MerR <a href="http://parts.igem.org/Part:BBa_K1758340" target="_blank">BBa_K1758340</a> and MerT-UTR-sfGF <a href="http://parts.igem.org/Part:BBa_K1758342" target="_blank">BBa_K1758342</a> used for<i>in vivo</i> characterization.</figcaption>
 
</figure>
 
</figure>
  
Line 536: Line 540:
  
 
<h2><i>in vitro</i></h2>
 
<h2><i>in vitro</i></h2>
<p>For the characterization of the mercury sensor with CFPS we used parts differing from that we used  in vivo characterization. For the in vitro characterization we used a cell extract out of cells which contain the Plasmid (<a href="http://parts.igem.org/Part:BBa_K1758340" target="_blank"> BBa_K1758340</a>). In addition to that we added  Plasmid-DNA  of the copper specific promoter merT with 5’UTR-sfGFP under the control of T7-promoter (<a href="http://parts.igem.org/Part:BBa_K1758344" target="_blank"> BBa_K1758344</a>)to the cell extract. The T7-promoter is needed to get a better fluorescence expression. </p>     
+
<p>For the characterization of the mercury sensor with CFPS we used parts differing from that we used  in vivo characterization. For the in vitro characterization we used a cell extract out of cells which contain the Plasmid (<a href="http://parts.igem.org/Part:BBa_K1758340" target="_blank">BBa_K1758340</a>). In addition to that we added  Plasmid-DNA  of the copper specific promoter merT with 5’UTR-sfGFP under the control of T7-promoter (<a href="http://parts.igem.org/Part:BBa_K1758344" target="_blank">BBa_K1758344</a>)to the cell extract. The T7-promoter is needed to get a better fluorescence expression. </p>     
  
 
<div class="row">
 
<div class="row">
Line 544: Line 548:
 
     </div>
 
     </div>
 
     <div class="col-md-6 text-center" style="margin-bottom: 50px"> <figure style="width: 400px">
 
     <div class="col-md-6 text-center" style="margin-bottom: 50px"> <figure style="width: 400px">
   <a href=" https://static.igem.org/mediawiki/2015/e/e2/Bielefeld-CebiTec_in_vitro_T7-merT-UTR-sfGFP.jpeg " data-lightbox="heavymetals" data-title="T7-merT-UTR-sfGFP used for<i>in vitro</i> characterization." https://static.igem.org/mediawiki/2015/e/e2/Bielefeld-CebiTec_in_vitro_T7-merT-UTR-sfGFP.jpeg " alt="promoter construct used for in vivo characterization."><img src=" https://static.igem.org/mediawiki/2015/e/e2/Bielefeld-CebiTec_in_vitro_T7-merT-UTR-sfGFP.jpeg" alt="promoter construct used for in vivo characterisation "></a> <figcaption>T7-merT-UTR-sfGFP <a href="http://parts.igem.org/Part:BBa_K1758344" target="_blank"> BBa_K175844</a> used for<i>in vitro</i> characterization.</figcaption>
+
   <a href=" https://static.igem.org/mediawiki/2015/e/e2/Bielefeld-CebiTec_in_vitro_T7-merT-UTR-sfGFP.jpeg " data-lightbox="heavymetals" data-title="T7-merT-UTR-sfGFP used for<i>in vitro</i> characterization." https://static.igem.org/mediawiki/2015/e/e2/Bielefeld-CebiTec_in_vitro_T7-merT-UTR-sfGFP.jpeg " alt="promoter construct used for in vivo characterization."><img src=" https://static.igem.org/mediawiki/2015/e/e2/Bielefeld-CebiTec_in_vitro_T7-merT-UTR-sfGFP.jpeg" alt="promoter construct used for in vivo characterisation "></a> <figcaption>T7-merT-UTR-sfGFP <a href="http://parts.igem.org/Part:BBa_K1758344" target="_blank">BBa_K175844</a> used for<i>in vitro</i> characterization.</figcaption>
 
</figure>   
 
</figure>   
 
         </div>
 
         </div>
Line 598: Line 602:
  
 
   
 
   
  <p> Our Nickel biosensor consists of parts of the rcn-operon from <i> E. coli </i> which codes for a nickel- and cobalt-efflux system. This system is highly sensitive to nickel. In absence of nickel or cobalt RcnR binds to the operator  and inhibits the nickel responsive promoter. With Ni(II)-ions present  the repression of the promoter RcnA will be reversed, because the repressor RcnR binds nickel-ions and cannot attach to the DNA. For our biosensor we construct the part (<a href="http://parts.igem.org/Part:BBa_K1758353" target="_blank"> BBa_K1758353 </a>by using the basic construction showed in <Our biosensors >. For this part we used the repressor RcnR under control of a constitutive promoter (<a href="http://parts.igem.org/Part:BBa_K1758350" target="_blank"> BBa_K1758350 </a>) and the nickel specific promoter RcnA with a 5’UTR  in front of sfGFP (<a href="http://parts.igem.org/Part:BBa_K1758352" target="_blank"> BBa_K1758352 </a>) as reporter protein. </p>
+
  <p> Our Nickel biosensor consists of parts of the rcn-operon from <i> E. coli </i> which codes for a nickel- and cobalt-efflux system. This system is highly sensitive to nickel. In absence of nickel or cobalt RcnR binds to the operator  and inhibits the nickel responsive promoter. With Ni(II)-ions present  the repression of the promoter RcnA will be reversed, because the repressor RcnR binds nickel-ions and cannot attach to the DNA. For our biosensor we construct the part (<a href="http://parts.igem.org/Part:BBa_K1758353" target="_blank">BBa_K1758353 </a>by using the basic construction showed in <Our biosensors >. For this part we used the repressor RcnR under control of a constitutive promoter (<a href="http://parts.igem.org/Part:BBa_K1758350" target="_blank">BBa_K1758350 </a>) and the nickel specific promoter RcnA with a 5’UTR  in front of sfGFP (<a href="http://parts.igem.org/Part:BBa_K1758352" target="_blank">BBa_K1758352 </a>) as reporter protein. </p>
 
   
 
   
 
  <figure style="width: 600px">
 
  <figure style="width: 600px">
 
<a href="https://static.igem.org/mediawiki/2015/8/8e/Bielefeld-CebiTec_in_vivo_Nickel.jpeg" data-lightbox="heavymetals" data-title=" Construct  konst.Prom + rcnR+rcnA-UTR-sfGFP consisting of konst.Prom + rcnR and rcnA-UTR-sfGF used for<i>in vivo</i> characterization. "><img src="https://static.igem.org/mediawiki/2015/8/8e/Bielefeld-CebiTec_in_vivo_Nickel.jpeg"></a>
 
<a href="https://static.igem.org/mediawiki/2015/8/8e/Bielefeld-CebiTec_in_vivo_Nickel.jpeg" data-lightbox="heavymetals" data-title=" Construct  konst.Prom + rcnR+rcnA-UTR-sfGFP consisting of konst.Prom + rcnR and rcnA-UTR-sfGF used for<i>in vivo</i> characterization. "><img src="https://static.igem.org/mediawiki/2015/8/8e/Bielefeld-CebiTec_in_vivo_Nickel.jpeg"></a>
<figcaption>Construct  konst.Prom + rcnR+rcnA-UTR-sfGFP <a href="http://parts.igem.org/Part:BBa_K1758354" target="_blank"> BBa_K1758354</a> consisting of konst.Prom + rcnR <a href="http://parts.igem.org/Part:BBa_K1758350" target="_blank"> BBa_K1758340</a> and rcnA-UTR-sfGF <a href="http://parts.igem.org/Part:BBa_K1758352" target="_blank"> BBa_K1758352</a> used for<i>in vivo</i> characterization.</figcaption> </figure>
+
<figcaption>Construct  konst.Prom + rcnR+rcnA-UTR-sfGFP <a href="http://parts.igem.org/Part:BBa_K1758354" target="_blank">BBa_K1758354</a> consisting of konst.Prom + rcnR <a href="http://parts.igem.org/Part:BBa_K1758350" target="_blank">BBa_K1758340</a> and rcnA-UTR-sfGF <a href="http://parts.igem.org/Part:BBa_K1758352" target="_blank">BBa_K1758352</a> used for<i>in vivo</i> characterization.</figcaption> </figure>
  
 
<div class="row">
 
<div class="row">

Revision as of 09:28, 18 September 2015

iGEM Bielefeld 2015


Heavy Metals

To make a long story short.

The different heavy metal sensors we worked with were characterized in vivo as well as in vitro.To check their response to different heavy metal conzentrations.

We tested the influence of each heavy metal on our sensors in vivo Therefore we used heavy metal concentrations based on heavy metal occurrences measured all over the world.


Adjusting the detection limit
Influence of heavy metals on the growth of E.coli KRX shown is the standard deviation of three biological replicates. For induction concentrations of 20 µg/L lead, 60 µg/L mercury, 60 µg/L chromium, 80 µg/L nickel, 40 mg/L copper which represent ten times of the WHO guideline were used.


The tested heavy metal concentrations had no negative effect on E. colis growth. Moreover there is no significant difference between the curves with heavy metals and the controls. This first experiment showed us, in vivo characterization with these sensors under the tested heavy metal concentrations is possible. Most of our sensors were cultivated in the BioLector. Due to the accuracy of this device we could measure our sample in duplicates.



Click on the test strip for more information about the heavy metals and how they can be detected:

teststrip