Difference between revisions of "Team:Sherbrooke/Results"

 
(34 intermediate revisions by 3 users not shown)
Line 2: Line 2:
 
<html>
 
<html>
  
<h1> Project Results</h1>
+
<h1> Hardware Results</h1>
  
 
<h2>Overview</h2>
 
<h2>Overview</h2>
Line 13: Line 13:
 
<span id="Experimentations Results"> &nbsp; </span>
 
<span id="Experimentations Results"> &nbsp; </span>
 
<h2>Experimentations Results<h2>
 
<h2>Experimentations Results<h2>
<hr><hr><hr>
+
<hr>
</br>
+
 
 
<h2>Project modules</h2>
 
<h2>Project modules</h2>
 
<ul>
 
<ul>
Line 27: Line 27:
 
<hr><hr>
 
<hr><hr>
 
<p>
 
<p>
A <a href="#MC96 Thermal Experimentations">thermal experimentation </a>has been the only experimentation done on the <i>MC96</i> module.
+
A <a href="#MC96 Thermal Experimentations Results">thermal experimentation </a>has been the only experimentation done on the <i>MC96</i> module.
 
</p>
 
</p>
  
<span id="MC96 Thermal Experimentations"> &nbsp; </span>
+
<span id="MC96 Thermal Experimentations Results"> &nbsp; </span>
<h3>Thermal experimentations</h3>
+
<h3>Thermal experimentations results</h3>
<hr>
+
<hr>
<p>
+
<p>
Has no prototype has been built yet, the only results available are the ones from simulations.
+
Has no prototype has been built yet, the only results available are the ones from simulations.
</p>
+
</p>
<h4>Simulation Results</h4>
+
<h4>Simulation Results</h4>
<p>
+
<p>
Some simulation has been done on earlier designs,  
+
Some simulation has been done on earlier designs,  
but none of the final design, due to the complexity of  
+
but none of the final design, due to the complexity of  
simulating heat pipes. Thus, these results are not finals  
+
simulating heat pipes. Thus, these results are not finals  
and will surely improve with the addition of the heat pipes  
+
and will surely improve with the addition of the heat pipes  
between the Peltier elements and the 96-well aluminium mold.  
+
between the Peltier elements and the 96-well aluminium mold.  
</p>
+
</p>
  
<p>
+
<p>
The following figures represent the repartition of heat at  
+
The following figures represent the repartition of heat at  
the beginning and the end of a heating speed test:  
+
the beginning and the end of a heating speed test:  
</p>
+
</p>
<p> <font color="red">MC96 Heating speed test image</font></p>
+
<table>
<p>
+
<tr>
The final temperature has been achieved in <font color="red">70</font> seconds.
+
<td><img width=300px height=auto src="https://static.igem.org/mediawiki/2015/c/c2/Sherbrooke_MC96_Heating_Speed_Simulation_start.png" /></td>
</p>
+
<td><img width=300px height=auto src="https://static.igem.org/mediawiki/2015/2/29/Sherbrooke_MC96_Heating_Speed_Simulation_end.png" /></td>
 
+
</tr>
<p>
+
<tr>
The following figures represent the repartition of heat at
+
<td align="center"><b>Start</b></td>
the beginning and the end of a cooling speed test:
+
<td align="center"><b>After 70 seconds</b></td>
</p>
+
</tr>
<p> <font color="red">MC96 Cooling speed test image</font></p>
+
</table>
<p>
+
<font color="#565656">Conclusion</font>
The final temperature has been achieved in <font color="red">135</font> seconds.
+
<ul>
</p>
+
<li>This design of aluminium mold can be heat by the peltier element at a speed of 1.1&#8451;/s which its enough to fit in the specification of 1&#8451;/s</li>
 +
</ul>
 +
</br>
  
 +
<p>
 +
The following figures represent the repartition of heat at
 +
the beginning and the end of a cooling speed test:
 +
</p>
 +
<table>
 +
<tr>
 +
<td><img width=300px height=auto src="https://static.igem.org/mediawiki/2015/e/e2/Sherbrooke_MC96_Cooling_Speed_Simulation_start.png" /></td>
 +
<td><img width=300px height=auto src="https://static.igem.org/mediawiki/2015/1/1a/Sherbrooke_MC96_Cooling_Speed_Simulation_end.png" /></td>
 +
</tr>
 +
<tr>
 +
<td align="center"><b>Start</b></td>
 +
<td align="center"><b>After 135 seconds</b></td>
 +
</tr>
 +
</table>
 +
 +
<font color="#565656">Conclusion</font>
 +
<ul>
 +
<li>This design of aluminium mold can be cool by the peltier element at a speed of 0.6&#8451;/s which its enough to fit in the specification of 0.5&#8451;/s</li>
 +
</ul>
 +
</br>
 
<a href="#MC96">Back to MC96</a>
 
<a href="#MC96">Back to MC96</a>
 
</br>
 
</br>
Line 71: Line 93:
 
<span id="MC1.5"> &nbsp; </span>
 
<span id="MC1.5"> &nbsp; </span>
 
<h2>MC1.5</h2>
 
<h2>MC1.5</h2>
<hr><hr>
+
<hr>
 
<p>
 
<p>
<a href="#MC1.5 Thermal Experimentations">Thermal</a> and <a href="#MC1.5 Magnetisation Experimentations">magnetisation</a> experimentations have been conduct to validate  
+
<a href="#MC1.5 Thermal Experimentations Results">Thermal</a> and <a href="#MC1.5 Magnetisation Experimentations Results">magnetisation</a> experimentations have been conduct to validate  
 
the design of the <i>MC1.5</i> module. These are the results of those experimentations.
 
the design of the <i>MC1.5</i> module. These are the results of those experimentations.
 
</p>
 
</p>
  
<span id="MC1.5 Thermal Experimentations"> &nbsp; </span>
+
<span id="MC1.5 Thermal Experimentations Results"> &nbsp; </span>
<h3>Thermal experimentation</h3>
+
<h3>Thermal experimentation results</h3>
 
<hr>
 
<hr>
<h4>Simulation Results</h4>
+
<h4>Simulation Results</h4>
<p>
+
<p>
These are the simulation results for the latest design of the MC1.5.
+
These are the simulation results for the latest design of the MC1.5.
</p>
+
</p>
  
<p>
+
<p>
The following figures represent the repartition of heat at  
+
The following figures represent the repartition of heat at  
the beginning and the end of a heating speed test:  
+
the beginning and the end of a heating speed test:  
</p>
+
</p>
<p> <font color="red">MC1.5Heating speed test image</font></p>
+
<table>
<p>
+
<tr>
The final temperature has been achieved in <font color="red">70</font> seconds.
+
<td><img width=300px height=auto src="https://static.igem.org/mediawiki/2015/e/e9/Sherbrooke_MC1.5_Heating_Speed_Simulation_start.png" /></td>
</p>
+
<td><img width=300px height=auto src="https://static.igem.org/mediawiki/2015/3/39/Sherbrooke_MC1.5_Heating_Speed_Simulation_end.png" /></td>
 +
</tr>
 +
<tr>
 +
<td align="center"><b>Start</b></td>
 +
<td align="center"><b>After 40 seconds</b></td>
 +
</tr>
 +
</table>
 +
<font color="#565656">Conclusion</font>
 +
<ul>
 +
<li>This design of aluminium mold can be heat by the peltier element at a speed of 1.9&#8451;/s which its enough to fit in the specification of 1&#8451;/s</li>
 +
</ul>
 +
</br>
 +
 +
<p>
 +
The following figures represent the repartition of heat at
 +
the beginning and the end of a cooling speed test:
 +
</p>
  
<p>
+
<table>
The following figures represent the repartition of heat at  
+
<tr>
the beginning and the end of a cooling speed test:  
+
<td><img width=300px height=auto src="https://static.igem.org/mediawiki/2015/e/e4/Sherbrooke_MC1.5_Cooling_Speed_Simulation_start.png" /></td>
</p>
+
<td><img width=300px height=auto src="https://static.igem.org/mediawiki/2015/2/2c/Sherbrooke_MC1.5_Cooling_Speed_Simulation_end.png" /></td>
<p> <font color="red">MC1.5 Cooling speed test image</font></p>
+
</tr>
<p>
+
<tr>
The final temperature has been achieved in <font color="red">135</font> seconds.
+
<td align="center"><b>Start</b></td>
</p>
+
<td align="center"><b>After 150 seconds</b></td>
 +
</tr>
 +
</table>
 +
 +
<font color="#565656">Conclusion</font>
 +
<ul>
 +
<li>This design of aluminium mold can be cool by the peltier element at a speed of 0.5&#8451;/s which its enough to fit in the specification of 0.5&#8451;/s</li>
 +
</ul>
 +
</br>
 +
<a href="#MC1.5">Back to MC1.5</a>
 +
 
 +
 
 +
<span id="MC1.5 Thermal Trials Results"> &nbsp; </span>
 +
<h4>Thermal Trials Results</h4>
 +
<ul>
 +
<li><a href="#MC1.5_Maintain_Cold_results">Maintaining a temperature below room temperature test results</a></li>
 +
<li><a href="#MC1.5_Maintain_Hot_results">Maintaining a temperature over room temperature test results</a></li>
 +
<li><a href="#MC1.5_to_Cold_results">Cooling speed test results</a></li>
 +
<li><a href="#MC1.5_to_Hot_results">Heating speed test results</a></li>
 +
</ul>
 +
 
 +
<span id="MC1.5_Maintain_Cold_results"> &nbsp; </span>
 +
<h5>Maintaining a temperature below room temperature test results</h5>
 +
<p>
 +
These are the results obtained by following this
 +
<a href="https://2015.igem.org/Team:Sherbrooke/Experiments#MC1.5_Maintain_Cold">protocol</a>.
 +
This table illustrates the relation between the voltages
 +
applied to the Peltier element and the set temperature of the aluminium mold.
 +
</p>
 +
<p> <font color="#565656">MC1.5 Calibration table cooling</font></p>
 +
<table>
 +
<tr>
 +
<th>Voltage (V)</th>
 +
<th>Aluminium mold temperature (&#8451;)</th>
 +
</tr>
 +
<tr>
 +
<td>0</td>
 +
<td>21.8</td>
 +
</tr>
 +
<tr>
 +
<td>1</td>
 +
<td>18.6</td>
 +
</tr>
 +
<tr>
 +
<td>2</td>
 +
<td>15</td>
 +
</tr>
 +
<tr>
 +
<td>3</td>
 +
<td>12</td>
 +
</tr>
 +
<tr>
 +
<td>4</td>
 +
<td>9</td>
 +
</tr>
 +
<tr>
 +
<td>5</td>
 +
<td>6.5</td>
 +
</tr>
 +
<tr>
 +
<td>6</td>
 +
<td>3.3</td>
 +
</tr>
 +
<tr>
 +
<td>7</td>
 +
<td>1.3</td>
 +
</tr>
 +
</table>
 +
<font color="#565656">Conclusion</font>
 +
<ul>
 +
<li>The MC1.5 can reach the low temperature specification of 4&#8451;</li>
 +
<li>The MC1.5 can reach the temperature stability specification of &#177;1.5&#8451;</li>
 +
</ul>
 +
</br>
 +
<a href="#MC1.5 Thermal Trials Results">Back to Thermal Trials Results</a>
 +
 
 +
<span id="MC1.5_Maintain_Hot_results"> &nbsp; </span>
 +
<h5>Maintaining a temperature over room temperature test results</h5>
 +
<p>
 +
These are the results obtained by following this
 +
<a href="https://2015.igem.org/Team:Sherbrooke/Experiments#MC1.5_Maintain_Hot">protocol</a>.
 +
This table illustrates the relation between the voltages
 +
applied to the Peltier element and the set temperature of the aluminium mold.
 +
</p>
 +
<p> <font color="#565656">MC1.5 Calibration table heating</font></p>
 +
<table>
 +
<tr>
 +
<th>Voltage (V)</th>
 +
<th>Aluminium mold temperature (&#8451;)</th>
 +
</tr>
 +
<tr>
 +
<td>0</td>
 +
<td>21.8</td>
 +
</tr>
 +
<tr>
 +
<td>1</td>
 +
<td>24.7</td>
 +
</tr>
 +
<tr>
 +
<td>2</td>
 +
<td>28.6</td>
 +
</tr>
 +
<tr>
 +
<td>3</td>
 +
<td>34.5</td>
 +
</tr>
 +
<tr>
 +
<td>4</td>
 +
<td>38.9</td>
 +
</tr>
 +
<tr>
 +
<td>5</td>
 +
<td>43.2</td>
 +
</tr>
 +
<tr>
 +
<td>6</td>
 +
<td>47.9</td>
 +
</tr>
 +
<tr>
 +
<td>7</td>
 +
<td>52.3</td>
 +
</tr>
 +
<tr>
 +
<td>8</td>
 +
<td>58.4</td>
 +
</tr>
 +
<tr>
 +
<td>9</td>
 +
<td>63</td>
 +
</tr>
 +
<tr>
 +
<td>10</td>
 +
<td>68.8</td>
 +
</tr>
 +
<tr>
 +
<td>11</td>
 +
<td>83.3</td>
 +
</tr>
 +
</table>
 +
 +
<font color="#565656">Conclusion</font>
 +
<ul>
 +
<li>The MC1.5 can reach the high temperature specification of 80&#8451;</li>
 +
<li>The MC1.5 can reach the temperature stability specification of &#177;1.5&#8451;</li>
 +
</ul>
 +
</br>
 +
<a href="#MC1.5 Thermal Trials Results">Back to Thermal Trials Results</a>
 +
 
 +
<span id="MC1.5_to_Cold_results"> &nbsp; </span>
 +
<h5>Cooling speed test results</h5>
 +
<p>
 +
These are the results obtained by following this
 +
<a href="https://2015.igem.org/Team:Sherbrooke/Experiments#MC1.5_to_Cold">protocol</a>.
 +
This figure shows the aluminium mold’s temperature versus time
 +
for an applied voltage of 15V.
 +
</p>
 +
<div class="imageContainer">
 +
<img width="50%" height="50%" src="https://static.igem.org/mediawiki/2015/7/75/Sherbrooke_MC1.5_Cooling_Speed_Results_15V.png" /><br/>
 +
<p>MC1.5 cooling speed results for 15V</p>
 +
</div>
 +
</p>
 +
This figure shows the aluminium mold’s temperature versus time
 +
for an applied voltage of 15.5V.
 +
</p>
 +
<div class="imageContainer">
 +
<img width="50%" height="50%" src="https://static.igem.org/mediawiki/2015/b/b6/Sherbrooke_MC1.5_Cooling_Speed_Results_15.5V.png" /><br/>
 +
<p>MC1.5 cooling speed results for 15.5V</p>
 +
</div>
 +
</p>
 +
This figure shows the aluminium mold’s temperature versus time
 +
for an applied voltage of 16V.
 +
</p>
 +
<div class="imageContainer">
 +
<img width="50%" height="50%" src="https://static.igem.org/mediawiki/2015/a/ad/Sherbrooke_MC1.5_Cooling_Speed_Results_16V.png" /><br/>
 +
<p>MC1.5 cooling speed results for 16V</p>
 +
</div>
 +
<font color="#565656">Conclusion</font>
 +
<ul>
 +
<li>15.5V is the optimal voltage to apply to obtain the highest cooling speed</li>
 +
<li>The MC1.5 can reach the specification of a cooling speed of 0.5&#8451;/s</li>
 +
</ul>
 +
</br>
 +
<a href="#MC1.5 Thermal Trials Results">Back to Thermal Trials Results</a>
 +
 
 +
<span id="MC1.5_to_Hot_results"> &nbsp; </span>
 +
<h5>Heating speed test results</h5>
 +
<p>
 +
These are the results obtained by following this
 +
<a href="https://2015.igem.org/Team:Sherbrooke/Experiments#MC1.5_to_Hot">protocol</a>.
 +
This figure shows the aluminium mold’s temperature versus time
 +
for an applied voltage of 24V.
 +
</p>
 +
<div class="imageContainer">
 +
<img width="50%" height="50%" src="https://static.igem.org/mediawiki/2015/2/2f/Sherbrooke_Heating_Speed_Results_24V.png" /><br/>
 +
<p>MC1.5 heating speed results for 24V</p>
 +
</div>
 +
<font color="#565656">Conclusion</font>
 +
<ul>
 +
<li>The MC1.5 can reach the specification of a heating speed of 1&#8451;/s</li>
 +
</ul>
 +
</br>
 +
<a href="#MC1.5 Thermal Trials Results">Back to Thermal Trials Results</a>
 +
</br>
 +
<a href="#MC1.5 Thermal Experimentations Results">Back to Thermal Experimentations Results</a>
 +
</br>
 
<a href="#MC1.5">Back to MC1.5</a>
 
<a href="#MC1.5">Back to MC1.5</a>
 +
</br>
 +
<a href="#top_menu_under">Back to top</a>
  
  
<span id="MC1.5 Thermal Trials Results"> &nbsp; </span>
+
<span id="MC1.5 Magnetisation Experimentations Results"> &nbsp; </span>
<h4>Thermal Trials Results</h4>
+
<h3>Magnetisation experimentation results</h3>
<ul>
+
<hr>
<li><a href="#MC1.5_Maintain_Cold_results">Maintaining a temperature below room temperature test results</a></li>
+
<p>
<li><a href="#MC1.5_Maintain_Hot_results">Maintaining a temperature over room temperature test results</a></li>
+
Applying an electromagnetic field on the test tube liquid is
<li><a href="#MC1.5_to_Cold_results">Cooling speed test results</a></li>
+
one of the key functionality of the MC1.5. These are the results
<li><a href="#MC1.5_to_Hot_results">Heating speed test results</a></li>
+
of the experimentation done to validate this feature in the MC1.5.
</ul>
+
</p>
  
<span id="MC1.5_Maintain_Cold_results"> &nbsp; </span>
+
<h5>Magnet attraction results</h5>
<h5>Maintaining a temperature below room temperature test results</h5>
+
<p>
<p>
+
These are the results obtained by following this protocol.
These are the results obtained by following this  
+
These figures show the displacement of the magnetic beads
<a href="https://2015.igem.org/Team:Sherbrooke/Experiments#MC1.5_Maintain_Cold">protocol</a>.
+
when an electromagnetic field applied to the test tube.
This table illustrates the relation between the voltages
+
</p>
applied to the Peltier element and the set temperature of the aluminium mold.
+
<p> <font color="#565656">Magnet attraction test results</font></p>
</p>
+
<table>
<p> <font color="red">MC1.5 Table Calibration cold</font></p>
+
<tr>
<font color="#565656">Conclusion</font>
+
<td>
<ul>
+
<img width="75%" height="75%" src="https://static.igem.org/mediawiki/2015/b/b8/Sherbrooke_Magnet_attraction_test_results_start.jpg" /><br/>
<li>The MC1.5 can reach the client’s low temperature specification of 4&#8451;</li>
+
</td>
<li>The MC1.5 can reach the client’s temperature stability specification of &#177;1.5&#8451;</li>
+
<td>
</ul>
+
<img width="75%" height="75%" src="https://static.igem.org/mediawiki/2015/d/d5/Sherbrooke_Magnet_attraction_test_results_30s.jpg" /><br/>
<a href="#MC1.5 Thermal Trials Results">Back to MC1.5 Thermal Trials Results</a>
+
</td>
 +
<td>
 +
<img width="75%" height="75%" src="https://static.igem.org/mediawiki/2015/d/de/Sherbrooke_Magnet_attraction_test_results_1m30s.jpg" /><br/>
 +
</td>
 +
</tr>
 +
<tr>
 +
<td>Start</td>
 +
<td>After 30 seconds</td>
 +
<td>After 1 minute and 30 seconds</td>
 +
</tr>
 +
</table>
 +
 +
<font color="#565656">Conclusion</font>
 +
<ul>
 +
<li>The neodymium magnet is enough powerful to attract the magnetic beads within 3 minutes.</li>
 +
</ul>
 +
</br>
  
<span id="MC1.5_Maintain_Hot_results"> &nbsp; </span>
+
<a href="#MC1.5 Magnetisation Experimentations Results">Back to Magnetisation Experimentations</a>
<h5>Maintaining a temperature below room temperature test results</h5>
+
</br>
<p>
+
<a href="#MC1.5">Back to MC1.5</a>
These are the results obtained by following this
+
</br>
<a href="https://2015.igem.org/Team:Sherbrooke/Experiments#MC1.5_Maintain_Hot">protocol</a>.
+
<a href="#top_menu_under">Back to top</a>
This table illustrates the relation between the voltages
+
applied to the Peltier element and the set temperature of the aluminium mold.
+
</p>
+
<p> <font color="red">MC1.5 Table Calibration HOT</font></p>
+
<font color="#565656">Conclusion</font>
+
<ul>
+
<li>The MC1.5 can reach the client’s high temperature specification of 80&#8451;</li>
+
<li>The MC1.5 can reach the client’s temperature stability specification of &#177;1.5&#8451;</li>
+
</ul>
+
<a href="#MC1.5 Thermal Trials Results">Back to MC1.5 Thermal Trials Results</a>
+
  
<span id="MC1.5_to_Cold_results"> &nbsp; </span>
 
<h5>Cooling speed test results</h5>
 
<p>
 
These are the results obtained by following this
 
<a href="https://2015.igem.org/Team:Sherbrooke/Experiments#MC1.5_to_Cold">protocol</a>.
 
This figure shows the aluminium mold’s temperature versus time
 
for an applied voltage of 15V.
 
</p>
 
<p> <font color="red">MC1.5 cooling speed test 15V</font></p>
 
</p>
 
This figure shows the aluminium mold’s temperature versus time
 
for an applied voltage of 15.5V.
 
</p>
 
<p> <font color="red">MC1.5 cooling speed test 15.5V</font></p>
 
</p>
 
This figure shows the aluminium mold’s temperature versus time
 
for an applied voltage of 16V.
 
</p>
 
<p> <font color="red">MC1.5 cooling speed test 16V</font></p>
 
<font color="#565656">Conclusion</font>
 
<ul>
 
<li>15.5V is the optimal voltage to apply to obtain the highest cooling speed</li>
 
<li>The MC1.5 can reach the client’s specification of a cooling speed of 0.5&#8451;/s</li>
 
</ul>
 
  
<a href="#MC1.5 Thermal Trials Results">Back to MC1.5 Thermal Trials Results</a>
 
  
<span id="MC1.5_to_Hot_results"> &nbsp; </span>
+
<span id="TAC"> &nbsp; </span>
<h5>Heating speed test results</h5>
+
<h2>TAC</h2>
 +
<hr>
 
<p>
 
<p>
These are the results obtained by following this
+
<a href="#TAC Thermal Experimentations Results">Thermal</a> and <a href="#TAC Turbidity Experimentations Results">turbidity</a> experimentations have been conduct to validate
<a href="https://2015.igem.org/Team:Sherbrooke/Experiments#MC1.5_to_Hot">protocol</a>.
+
the design of the <i>TAC</i> module.
This figure shows the aluminium mold’s temperature versus time
+
for an applied voltage of 24V.
+
 
</p>
 
</p>
<p> <font color="red">MC1.5 heating speed test 24V</font></p>
 
<font color="#565656">Conclusion</font>
 
<ul>
 
<li>The MC1.5 can reach the client’s specification of a heating speed of 1&#8451;/s</li>
 
</ul>
 
<a href="#MC1.5 Thermal Trials Results">Back to MC1.5 Thermal Trials Results</a>
 
  
 +
<span id="TAC Thermal Experimentations Results"> &nbsp; </span>
 +
<h3>Thermal experimentation results</h3>
 +
<hr>
 +
<h4>Simulation Results</h4>
 +
<p>
 +
These are the simulation results for the latest design of the TAC.
 +
</p>
  
 +
<p>
 +
The following figures represent the repartition of heat at
 +
the beginning and the end of a heating speed test:
 +
<table>
 +
<tr>
 +
<td><img width=300px height=auto src="https://static.igem.org/mediawiki/2015/a/ad/Sherbrooke_TAC_Heating_Speed_Simulation_start.png" /></td>
 +
<td><img width=300px height=auto src="https://static.igem.org/mediawiki/2015/c/cc/Sherbrooke_TAC_Heating_Speed_Simulation_end.png" /></td>
 +
</tr>
 +
<tr>
 +
<td align="center"><b>Start</b></td>
 +
<td align="center"><b>After 26 seconds</b></td>
 +
</tr>
 +
</table>
 +
<font color="#565656">Conclusion</font>
 +
<ul>
 +
<li>This design of aluminium mold can be heat by the peltier element at a speed of 1.4&#8451;/s which its enough to fit in the specification of 1&#8451;/s</li>
 +
</ul>
 +
</br>
  
 +
<p>
 +
The following figures represent the repartition of heat at
 +
the beginning and the end of a cooling speed test:
 +
</p>
 +
<table>
 +
<tr>
 +
<td><img width=300px height=auto src="https://static.igem.org/mediawiki/2015/b/bb/Sherbrooke_TAC_Cooling_Speed_Simulation_start.png" /></td>
 +
<td><img width=300px height=auto src="https://static.igem.org/mediawiki/2015/2/21/Sherbrooke_TAC_Cooling_Speed_Simulation_end.png" /></td>
 +
</tr>
 +
<tr>
 +
<td align="center"><b>Start</b></td>
 +
<td align="center"><b>After 80 seconds</b></td>
 +
</tr>
 +
</table>
 +
 +
<font color="#565656">Conclusion</font>
 +
<ul>
 +
<li>This design of aluminium mold can be cool by the peltier element at a speed of 0.5&#8451;/s which its enough to fit in the specification of 0.5&#8451;/s</li>
 +
</ul>
 +
</br>
 +
<a href="#TAC">Back to TAC</a>
  
 +
<span id="TAC Thermal Trials Results"> &nbsp; </span>
 +
<h4>Thermal Trials Results</h4>
 +
<ul>
 +
<li><a href="#TAC_Maintain_Cold_results">Maintaining a temperature below room temperature test results</a></li>
 +
<li><a href="#TAC_Maintain_Hot_results">Maintaining a temperature over room temperature test results</a></li>
 +
<li><a href="#TAC_to_Cold_results">Cooling speed test results</a></li>
 +
<li><a href="#TAC_to_Hot_results">Heating speed test results</a></li>
 +
</ul>
 +
 +
<span id="TAC_Maintain_Cold_results"> &nbsp; </span>
 +
<h5>Maintaining a temperature below room temperature test results</h5>
 +
<p>
 +
These are the results obtained by following this
 +
<a href="https://2015.igem.org/Team:Sherbrooke/Experiments#TAC_Maintain_Cold">protocol</a>.
 +
This table illustrates the relation between the voltages
 +
applied to the Peltier element and the set temperature of the aluminium mold.
 +
</p>
 +
<p> <font color="#565656">TAC Calibration table cooling</font></p>
 +
<table>
 +
<tr>
 +
<th>Voltage (V)</th>
 +
<th>Aluminium mold temperature (&#8451;)</th>
 +
</tr>
 +
<tr>
 +
<td>0</td>
 +
<td>21.8</td>
 +
</tr>
 +
<tr>
 +
<td>1</td>
 +
<td>17.4</td>
 +
</tr>
 +
<tr>
 +
<td>2</td>
 +
<td>14.6</td>
 +
</tr>
 +
<tr>
 +
<td>3</td>
 +
<td>12</td>
 +
</tr>
 +
<tr>
 +
<td>4</td>
 +
<td>8.9</td>
 +
</tr>
 +
<tr>
 +
<td>5</td>
 +
<td>6.1</td>
 +
</tr>
 +
<tr>
 +
<td>6</td>
 +
<td>3.2</td>
 +
</tr>
 +
<tr>
 +
<td>7</td>
 +
<td>1.4</td>
 +
</tr>
 +
<tr>
 +
<td>8</td>
 +
<td>-0.5</td>
 +
</tr>
 +
<tr>
 +
<td>9</td>
 +
<td>-1</td>
 +
</tr>
 +
</table>
 +
<font color="#565656">Conclusion</font>
 +
<ul>
 +
<li>The TAC can reach the low temperature specification of 0&#8451;</li>
 +
<li>The TAC can reach the temperature stability specification of &#177;1.5&#8451;</li>
 +
</ul>
 +
</br>
 +
<a href="#TAC Thermal Trials Results">Back to Thermal Trials Results</a>
 +
 +
<span id="TAC_Maintain_Hot_results"> &nbsp; </span>
 +
<h5>Maintaining a temperature over room temperature test results</h5>
 +
<p>
 +
These are the results obtained by following this
 +
<a href="https://2015.igem.org/Team:Sherbrooke/Experiments#TAC_Maintain_Hot">protocol</a>.
 +
This table illustrates the relation between the voltages
 +
applied to the Peltier element and the set temperature of the aluminium mold.
 +
</p>
 +
<p> <font color="#565656">TAC Calibration table heating</font></p>
 +
<table>
 +
<tr>
 +
<th>Voltage (V)</th>
 +
<th>Aluminium mold temperature (&#8451;)</th>
 +
</tr>
 +
<tr>
 +
<td>0</td>
 +
<td>21.8</td>
 +
</tr>
 +
<tr>
 +
<td>1</td>
 +
<td>23.9</td>
 +
</tr>
 +
<tr>
 +
<td>2</td>
 +
<td>28.2</td>
 +
</tr>
 +
<tr>
 +
<td>3</td>
 +
<td>33.4</td>
 +
</tr>
 +
<tr>
 +
<td>4</td>
 +
<td>38.8</td>
 +
</tr>
 +
<tr>
 +
<td>5</td>
 +
<td>43.8</td>
 +
</tr>
 +
</table>
 +
<font color="#565656">Conclusion</font>
 +
<ul>
 +
<li>The TAC can reach the high temperature specification of 37&#8451;</li>
 +
<li>The TAC can reach the temperature stability specification of &#177;1.5&#8451;</li>
 +
</ul>
 +
</br>
 +
<a href="#TAC Thermal Trials Results">Back to Thermal Trials Results</a>
 +
 +
<span id="TAC_to_Cold_results"> &nbsp; </span>
 +
<h5>Cooling speed test results</h5>
 +
<p>
 +
These are the results obtained by following this
 +
<a href="https://2015.igem.org/Team:Sherbrooke/Experiments#TAC_to_Cold">protocol</a>.
 +
This figure shows the aluminium mold’s temperature versus time
 +
for an applied voltage of 15V.
 +
</p>
 +
<div class="imageContainer">
 +
<img width="50%" height="50%" src="https://static.igem.org/mediawiki/2015/2/2c/Sherbrooke_TAC_Cooling_Speed_Results_15V.png" /><br/>
 +
<p>TAC cooling speed test 15V</p>
 +
</div>
 +
</p>
 +
This figure shows the aluminium mold’s temperature versus time
 +
for an applied voltage of 15.5V.
 +
</p>
 +
<div class="imageContainer">
 +
<img width="50%" height="50%" src="https://static.igem.org/mediawiki/2015/1/13/Sherbrooke_TAC_Cooling_Speed_Results_15.5V.png" /><br/>
 +
<p>TAC cooling speed test 15.5V</p>
 +
</div>
 +
</p>
 +
This figure shows the aluminium mold’s temperature versus time
 +
for an applied voltage of 16V.
 +
</p>
 +
<div class="imageContainer">
 +
<img width="50%" height="50%" src="https://static.igem.org/mediawiki/2015/c/c2/Sherbrooke_TAC_Cooling_Speed_Results_16V.png" /><br/>
 +
<p>TAC cooling speed test 16V</p>
 +
</div>
 +
<font color="#565656">Conclusion</font>
 +
<ul>
 +
<li>15.5V is the optimal voltage to apply to obtain the highest cooling speed</li>
 +
<li>The TAC can reach the specification of a cooling speed of 0.3&#8451;/s over room temperature.</li>
 +
<li>The TAC can reach the specification of a cooling speed of 0.2&#8451;/s below room temperature.</li>
 +
</ul>
 +
</br>
 +
<a href="#TAC Thermal Trials Results">Back to Thermal Trials Results</a>
 +
 +
<span id="TAC_to_Hot_results"> &nbsp; </span>
 +
<h5>Heating speed test results</h5>
 +
<p>
 +
These are the results obtained by following this
 +
<a href="https://2015.igem.org/Team:Sherbrooke/Experiments#TAC_to_Hot">protocol</a>.
 +
This figure shows the aluminium mold’s temperature versus time
 +
for an applied voltage of 24V.
 +
</p>
 +
<div class="imageContainer">
 +
<img width="50%" height="50%" src="https://static.igem.org/mediawiki/2015/6/6d/Sherbrooke_TAC_Heating_Speed_Results_24V.png" /><br/>
 +
<p>TAC heating speed test 24V</p>
 +
</div>
 +
<font color="#565656">Conclusion</font>
 +
<ul>
 +
<li>The TAC can reach the specification of a heating speed of 1&#8451;/s</li>
 +
</ul>
 +
</br>
 +
<a href="#TAC Thermal Trials Results">Back to Thermal Trials Results</a>
 +
</br>
 +
<a href="#TAC Thermal Experimentations Results">Back to Thermal Experimentations Results</a>
 +
</br>
 +
<a href="#TAC">Back to TAC</a>
 +
</br>
 +
<a href="#top_menu_under">Back to top</a>
 +
 +
 +
<span id="TAC Turbidity Experimentations Results"> &nbsp; </span>
 +
<h3>Turbidity experimentation results</h3>
 +
<hr>
 +
<p>
 +
The purpose of this experiment is to calibrate the turbidity function on the TAC.
 +
</p>
 +
<h4>Results</h4>
 +
<p>
 +
These are the results obtained by following this
 +
<a href="https://2015.igem.org/Team:Sherbrooke/Experiments#TAC Turbidity Experimentations">protocol</a>.
 +
The following figure is the calibration curve obtained by making a fit on the data obtained.
 +
</p>
 +
<div class="imageContainer">
 +
<img width="50%" height="50%" src="https://static.igem.org/mediawiki/2015/4/47/Sherbrooke_Optical_density_vs_Amplitude_difference.png" /><br/>
 +
<p>Calibration curve for turbidity function</p>
 +
    </div>
 +
<font color="#565656">Conclusion</font>
 +
<ul>
 +
<li>The TAC is able to measure turbidity with &#177;5% of a reference turbidimeter</li>
 +
</ul>
 +
 +
<a href="#TAC Turbidity Experimentations Results">Back to Turbidity Experimentations Results</a>
 +
</br>
 +
<a href="#TAC">Back to TAC</a>
 +
</br>
 +
<a href="#top_menu_under">Back to top</a>
 +
 +
<hr>
 
<span id="Achievements"> &nbsp; </span>
 
<span id="Achievements"> &nbsp; </span>
<h2>Achievements<h2>
+
<h2>Achievements</h2>
<hr><hr><hr>
+
<hr>
 
</br>
 
</br>
 +
<p>
 +
The project has been done in the context of a
 +
end of baccalaureate project that is ending in December 2015.
 +
Thus, some specifications that have not been reached for the
 +
IGEM competition could be achieved in the following months.
 +
</p>
 +
<p> <font color="green">Specification achieved</font></p>
 +
<p> <font color="red">Specification not achieved yet</font></p>
  
 +
<font color="#565656">Platform:</font>
 +
<ul>
 +
<li><font color="green">Movements of the robotic platform must have a 1 mm precision</font></li>
 +
<li><font color="green">Complete platform must be fully open-hardware and detailed at no more than 10000$</font></li>
 +
</ul>
 +
 +
<font color="#565656">Tools Holder:</font>
 +
<ul>
 +
<li><font color="green">Must be able to use different kinds of pipette tools at the same time</font></li>
 +
<li><font color="green">Must be able to change tools with ease.</font></li>
 +
</ul>
 +
 +
<font color="#565656">Gripper:</font>
 +
<ul>
 +
<li><font color="green">Have a range of opening from 0 mm to 85 mm</font></li>
 +
<li><font color="green">Must grab as small as 1.5 mL tubes</font></li>
 +
<li><font color="green">Must grab as large as 96-well plates</font></li>
 +
</ul>
 +
 +
<font color="#565656">Centrifuge:</font>
 +
<ul>
 +
<li><font color="red">Rotate at a speed capable of exerting a minimum gravitational force of 6000G</font></li>
 +
<li><font color="green">Must be equipped with security devices such as detection of
 +
abnormal vibration or securing the lid after closing</font></li>
 +
</ul>
 +
 +
<font color="#565656">MC96:</font>
 +
<ul>
 +
<li><font color="green">Suitable for a 96-well plate (common sized plate for biological manipulations</font></li>
 +
<li><font color="red">Control and maintain temperature cycling between 4 to 80&#8451; &#177;1.5&#8451;</font></li>
 +
<li><font color="red">Achieve a cooling and heating ramp of 0.5 to 1&#8451;/s</font></li>
 +
<li><font color="red">Apply an electromagnetic field on demand</font></li>
 +
<li><font color="red">Less than 1000$</font></li>
 +
</ul>
 +
 +
<font color="#565656">MC1.5:</font>
 +
<ul>
 +
<li><font color="green">Suitable for a test tube of 1.5mL</font></li>
 +
<li><font color="green">Capable of independent control for each unit of three tubes</font></li>
 +
<li><font color="green">Control and maintain temperature cycling between 4 to 80&#8451; &#177;1.5&#8451;</font></li>
 +
<li><font color="green">Achieve a cooling and heating ramp of 0.5 to 1&#8451;/s</font></li>
 +
<li><font color="green">Apply an electromagnetic field on demand</font></li>
 +
<li><font color="green">Less than 1000$</font></li>
 +
</ul>
 +
 +
<font color="#565656">TAC:</font>
 +
<ul>
 +
<li><font color="green">Suitable for a glass tube having a diameter of 25mm, capacity of 50mL</font></li>
 +
<li><font color="green">Independent control for each tube</font></li>
 +
<li><font color="green">Control and maintain temperature cycling between 0 to 37&#8451; &#177;1.5&#8451;</font></li>
 +
<li><font color="green">Achieve a heating ramp of 0.08&#8451;/s</font></li>
 +
<li><font color="green">Achieve a cooling ramp of 0.1&#8451;/s above room's temperature</font></li>
 +
<li><font color="green">Achieve a cooling ramp of 0.025&#8451;/s below room's temperature</font></li>
 +
<li><font color="green">Stirring the liquid (Mixing of bacterial cultures)</font></li>
 +
<li><font color="green">Calculate the optical density of the liquid with a precision of &#177;5% from a reference turbidimeter</font></li>
 +
<li><font color="green">Less than 1000$</font></li>
 +
</ul>
  
 
<span id="Future Plans"> &nbsp; </span>
 
<span id="Future Plans"> &nbsp; </span>
<h2>Future Plans<h2>
+
<h2>Future Plans</h2>
<hr><hr><hr>
+
<hr>
 
</br>
 
</br>
 +
<p>
 +
The project has been done in the context of end of baccalaureate project
 +
that is ending in December 2015. Thus, further development will be done
 +
in the following months. This development will be done on the modules that
 +
have not been completed and on the optimization of the platform. 
 +
</p>
 +
<p>
 +
After December 2015, new modules are planned. These are the ideas for new modules.
 +
</p>
 +
<font color="#565656">Modules Planned</font>
 +
<ul>
 +
<li>Camera on the tool holder with autofocus and image analysis capability</li>
 +
<li>PCR module</li>
 +
<li>Cell electroporator</li>
 +
<li>Pump for greater liquid volume (over 1ml)</li>
 +
<li>Vacuum for spin column-based nucleic acid purification</li>
 +
<li>Incubator with temperature and C02 control</li>
 +
</ul>
 +
 +
<p>
 +
These modules could be realized by a new team of the University of Sherbrooke.
 +
</p>
 +
<p>
 +
Some chemists have shown interest in the platform and its modules.
 +
Adaptation of those modules for chemistry could also be a possible
 +
avenue for further development
 +
</p>
  
 +
<br>
 +
<a href="#top_menu_under">Back to top</a>
  
 
</div>
 
</div>
 
         </div></div> <!--Closing tag for div id="mainContainer" and div id="contentContainer". Opening tag are in the template-->
 
         </div></div> <!--Closing tag for div id="mainContainer" and div id="contentContainer". Opening tag are in the template-->
 
</html>
 
</html>

Latest revision as of 01:33, 19 September 2015

Hardware Results

Overview

 

Experimentations Results


Project modules

 

MC96



A thermal experimentation has been the only experimentation done on the MC96 module.

 

Thermal experimentations results


Has no prototype has been built yet, the only results available are the ones from simulations.

Simulation Results

Some simulation has been done on earlier designs, but none of the final design, due to the complexity of simulating heat pipes. Thus, these results are not finals and will surely improve with the addition of the heat pipes between the Peltier elements and the 96-well aluminium mold.

The following figures represent the repartition of heat at the beginning and the end of a heating speed test:

Start After 70 seconds
Conclusion
  • This design of aluminium mold can be heat by the peltier element at a speed of 1.1℃/s which its enough to fit in the specification of 1℃/s

The following figures represent the repartition of heat at the beginning and the end of a cooling speed test:

Start After 135 seconds
Conclusion
  • This design of aluminium mold can be cool by the peltier element at a speed of 0.6℃/s which its enough to fit in the specification of 0.5℃/s

Back to MC96
Back to Experimentations Results
Back to top  

MC1.5


Thermal and magnetisation experimentations have been conduct to validate the design of the MC1.5 module. These are the results of those experimentations.

 

Thermal experimentation results


Simulation Results

These are the simulation results for the latest design of the MC1.5.

The following figures represent the repartition of heat at the beginning and the end of a heating speed test:

Start After 40 seconds
Conclusion
  • This design of aluminium mold can be heat by the peltier element at a speed of 1.9℃/s which its enough to fit in the specification of 1℃/s

The following figures represent the repartition of heat at the beginning and the end of a cooling speed test:

Start After 150 seconds
Conclusion
  • This design of aluminium mold can be cool by the peltier element at a speed of 0.5℃/s which its enough to fit in the specification of 0.5℃/s

Back to MC1.5  

Thermal Trials Results

 
Maintaining a temperature below room temperature test results

These are the results obtained by following this protocol. This table illustrates the relation between the voltages applied to the Peltier element and the set temperature of the aluminium mold.

MC1.5 Calibration table cooling

Voltage (V) Aluminium mold temperature (℃)
0 21.8
1 18.6
2 15
3 12
4 9
5 6.5
6 3.3
7 1.3
Conclusion
  • The MC1.5 can reach the low temperature specification of 4℃
  • The MC1.5 can reach the temperature stability specification of ±1.5℃

Back to Thermal Trials Results  
Maintaining a temperature over room temperature test results

These are the results obtained by following this protocol. This table illustrates the relation between the voltages applied to the Peltier element and the set temperature of the aluminium mold.

MC1.5 Calibration table heating

Voltage (V) Aluminium mold temperature (℃)
0 21.8
1 24.7
2 28.6
3 34.5
4 38.9
5 43.2
6 47.9
7 52.3
8 58.4
9 63
10 68.8
11 83.3
Conclusion
  • The MC1.5 can reach the high temperature specification of 80℃
  • The MC1.5 can reach the temperature stability specification of ±1.5℃

Back to Thermal Trials Results  
Cooling speed test results

These are the results obtained by following this protocol. This figure shows the aluminium mold’s temperature versus time for an applied voltage of 15V.


MC1.5 cooling speed results for 15V

This figure shows the aluminium mold’s temperature versus time for an applied voltage of 15.5V.


MC1.5 cooling speed results for 15.5V

This figure shows the aluminium mold’s temperature versus time for an applied voltage of 16V.


MC1.5 cooling speed results for 16V

Conclusion
  • 15.5V is the optimal voltage to apply to obtain the highest cooling speed
  • The MC1.5 can reach the specification of a cooling speed of 0.5℃/s

Back to Thermal Trials Results  
Heating speed test results

These are the results obtained by following this protocol. This figure shows the aluminium mold’s temperature versus time for an applied voltage of 24V.


MC1.5 heating speed results for 24V

Conclusion
  • The MC1.5 can reach the specification of a heating speed of 1℃/s

Back to Thermal Trials Results
Back to Thermal Experimentations Results
Back to MC1.5
Back to top  

Magnetisation experimentation results


Applying an electromagnetic field on the test tube liquid is one of the key functionality of the MC1.5. These are the results of the experimentation done to validate this feature in the MC1.5.

Magnet attraction results

These are the results obtained by following this protocol. These figures show the displacement of the magnetic beads when an electromagnetic field applied to the test tube.

Magnet attraction test results




Start After 30 seconds After 1 minute and 30 seconds
Conclusion
  • The neodymium magnet is enough powerful to attract the magnetic beads within 3 minutes.

Back to Magnetisation Experimentations
Back to MC1.5
Back to top  

TAC


Thermal and turbidity experimentations have been conduct to validate the design of the TAC module.

 

Thermal experimentation results


Simulation Results

These are the simulation results for the latest design of the TAC.

The following figures represent the repartition of heat at the beginning and the end of a heating speed test:

Start After 26 seconds
Conclusion
  • This design of aluminium mold can be heat by the peltier element at a speed of 1.4℃/s which its enough to fit in the specification of 1℃/s

The following figures represent the repartition of heat at the beginning and the end of a cooling speed test:

Start After 80 seconds
Conclusion
  • This design of aluminium mold can be cool by the peltier element at a speed of 0.5℃/s which its enough to fit in the specification of 0.5℃/s

Back to TAC  

Thermal Trials Results

 
Maintaining a temperature below room temperature test results

These are the results obtained by following this protocol. This table illustrates the relation between the voltages applied to the Peltier element and the set temperature of the aluminium mold.

TAC Calibration table cooling

Voltage (V) Aluminium mold temperature (℃)
0 21.8
1 17.4
2 14.6
3 12
4 8.9
5 6.1
6 3.2
7 1.4
8 -0.5
9 -1
Conclusion
  • The TAC can reach the low temperature specification of 0℃
  • The TAC can reach the temperature stability specification of ±1.5℃

Back to Thermal Trials Results  
Maintaining a temperature over room temperature test results

These are the results obtained by following this protocol. This table illustrates the relation between the voltages applied to the Peltier element and the set temperature of the aluminium mold.

TAC Calibration table heating

Voltage (V) Aluminium mold temperature (℃)
0 21.8
1 23.9
2 28.2
3 33.4
4 38.8
5 43.8
Conclusion
  • The TAC can reach the high temperature specification of 37℃
  • The TAC can reach the temperature stability specification of ±1.5℃

Back to Thermal Trials Results  
Cooling speed test results

These are the results obtained by following this protocol. This figure shows the aluminium mold’s temperature versus time for an applied voltage of 15V.


TAC cooling speed test 15V

This figure shows the aluminium mold’s temperature versus time for an applied voltage of 15.5V.


TAC cooling speed test 15.5V

This figure shows the aluminium mold’s temperature versus time for an applied voltage of 16V.


TAC cooling speed test 16V

Conclusion
  • 15.5V is the optimal voltage to apply to obtain the highest cooling speed
  • The TAC can reach the specification of a cooling speed of 0.3℃/s over room temperature.
  • The TAC can reach the specification of a cooling speed of 0.2℃/s below room temperature.

Back to Thermal Trials Results  
Heating speed test results

These are the results obtained by following this protocol. This figure shows the aluminium mold’s temperature versus time for an applied voltage of 24V.


TAC heating speed test 24V

Conclusion
  • The TAC can reach the specification of a heating speed of 1℃/s

Back to Thermal Trials Results
Back to Thermal Experimentations Results
Back to TAC
Back to top  

Turbidity experimentation results


The purpose of this experiment is to calibrate the turbidity function on the TAC.

Results

These are the results obtained by following this protocol. The following figure is the calibration curve obtained by making a fit on the data obtained.


Calibration curve for turbidity function

Conclusion
  • The TAC is able to measure turbidity with ±5% of a reference turbidimeter
Back to Turbidity Experimentations Results
Back to TAC
Back to top
 

Achievements



The project has been done in the context of a end of baccalaureate project that is ending in December 2015. Thus, some specifications that have not been reached for the IGEM competition could be achieved in the following months.

Specification achieved

Specification not achieved yet

Platform:
  • Movements of the robotic platform must have a 1 mm precision
  • Complete platform must be fully open-hardware and detailed at no more than 10000$
Tools Holder:
  • Must be able to use different kinds of pipette tools at the same time
  • Must be able to change tools with ease.
Gripper:
  • Have a range of opening from 0 mm to 85 mm
  • Must grab as small as 1.5 mL tubes
  • Must grab as large as 96-well plates
Centrifuge:
  • Rotate at a speed capable of exerting a minimum gravitational force of 6000G
  • Must be equipped with security devices such as detection of abnormal vibration or securing the lid after closing
MC96:
  • Suitable for a 96-well plate (common sized plate for biological manipulations
  • Control and maintain temperature cycling between 4 to 80℃ ±1.5℃
  • Achieve a cooling and heating ramp of 0.5 to 1℃/s
  • Apply an electromagnetic field on demand
  • Less than 1000$
MC1.5:
  • Suitable for a test tube of 1.5mL
  • Capable of independent control for each unit of three tubes
  • Control and maintain temperature cycling between 4 to 80℃ ±1.5℃
  • Achieve a cooling and heating ramp of 0.5 to 1℃/s
  • Apply an electromagnetic field on demand
  • Less than 1000$
TAC:
  • Suitable for a glass tube having a diameter of 25mm, capacity of 50mL
  • Independent control for each tube
  • Control and maintain temperature cycling between 0 to 37℃ ±1.5℃
  • Achieve a heating ramp of 0.08℃/s
  • Achieve a cooling ramp of 0.1℃/s above room's temperature
  • Achieve a cooling ramp of 0.025℃/s below room's temperature
  • Stirring the liquid (Mixing of bacterial cultures)
  • Calculate the optical density of the liquid with a precision of ±5% from a reference turbidimeter
  • Less than 1000$
 

Future Plans



The project has been done in the context of end of baccalaureate project that is ending in December 2015. Thus, further development will be done in the following months. This development will be done on the modules that have not been completed and on the optimization of the platform.

After December 2015, new modules are planned. These are the ideas for new modules.

Modules Planned
  • Camera on the tool holder with autofocus and image analysis capability
  • PCR module
  • Cell electroporator
  • Pump for greater liquid volume (over 1ml)
  • Vacuum for spin column-based nucleic acid purification
  • Incubator with temperature and C02 control

These modules could be realized by a new team of the University of Sherbrooke.

Some chemists have shown interest in the platform and its modules. Adaptation of those modules for chemistry could also be a possible avenue for further development


Back to top