Difference between revisions of "Team:Bielefeld-CeBiTec/Results/HeavyMetals"

Line 419: Line 419:
 
<h2><i>in vitro</i></h2>
 
<h2><i>in vitro</i></h2>
  
  <p>For the characterization of the copper sensor with CFPS we used parts differing from that we used in vivo characterization. For the in vitro characterization we used a cell extract out of cells which contain the Plasmid (<a href="http://parts.igem.org/Part:BBa_K1758320" target="_blank">BBa_K1758320</a>). In addition to that we added Plasmid-DNA of the copper specific promoter copAP with 5’UTR-sfGFP under the control of T7-promoter (<a href="http://parts.igem.org/Part:BBa_K1758325" target="_blank">BBa_K1758325</a>)to the cell extract. The T7-promoter is needed to get a better fluorescence expression. </p>     
+
  <p>For the characterization of the copper sensor with CFPS we used parts differing from that we used in vivo characterization. For the in vitro characterization we used a cell extract out of cells which contain the plasmid  (<a href="http://parts.igem.org/Part:BBa_K1758320" target="_blank">BBa_K1758320</a>)(figure 5), so that the resulting extract is enriched with the avtivator CueR  To this extract we added plasmid-DNA of the copper specific promoter <i>copAP</i> with 5’UTR-sfGFP under the control of T7-promoter (<a href="http://parts.igem.org/Part:BBa_K1758325" target="_blank">BBa_K1758325</a>)to the cell extract. The T7-promoter is needed to get a better fluorescence expression. </p>     
 
      
 
      
 
<div class="row">
 
<div class="row">
 
     <div class="col-md-6 text-center" style="margin-bottom: 50px"> <figure style="width: 400px">
 
     <div class="col-md-6 text-center" style="margin-bottom: 50px"> <figure style="width: 400px">
   <a href=" https://static.igem.org/mediawiki/2015/0/05/Bielefeld-CeBiTec_in_vitro_CueR-part.jpeg " data-lightbox="heavymetals" data-title=" konst.Prom + CueR used for<i> in vitro</i> characterization. " alt="repressor construct used for in vivo characterization."><img src=" https://static.igem.org/mediawiki/2015/0/05/Bielefeld-CeBiTec_in_vitro_CueR-part.jpeg " alt="repressor construct used for in vitro characterisation"></a> <figcaption> konst.Prom + CueR <a href="http://parts.igem.org/Part:BBa_K1758320" target="_blank">BBa_K1758320</a> used for<i>in vitro</i> characterization.
+
   <a href=" https://static.igem.org/mediawiki/2015/0/05/Bielefeld-CeBiTec_in_vitro_CueR-part.jpeg " data-lightbox="heavymetals" data-title=" Figure 5: To produce the cell extract for <i>in vitro</i> characterization a construct(BBa_K1758320 ) with copper activator under the control of a constitutive promoter and strong RBS (BBa_K608002)  is needed. " alt="repressor construct used for in vivo characterization."><img src=" https://static.igem.org/mediawiki/2015/0/05/Bielefeld-CeBiTec_in_vitro_CueR-part.jpeg " alt="repressor construct used for in vitro characterisation"></a> <figcaption> Figure 5: To produce the cell extract for <i>in vitro</i> characterization a construct (<a href="http://parts.igem.org/Part:BBa_K1758320" target="_blank">BBa_K1758320</a>) with copper activator under the control of a constitutive promoter and strong RBS (BBa_K608002) is needed.  
 
</figcaption>
 
</figcaption>
 
</figure>
 
</figure>
Line 432: Line 432:
 
         </div>
 
         </div>
 
         </div>
 
         </div>
 +
 +
<p>The results presented in figure 7 illustrates the influences of different copper concentrations on the cell extract. </p>
 
   
 
   
  
In the following graphic the influences of different copper concentrations on the cell extact are shown
+
 
 
<!-- Einfluss von Kupfer auf den Zellextrakt, keinen negative Einfluss auf das CFPS so mit kann gezeigt werden dass dieses System relativ stabil gegenüber verschiedenen Kupferkonzentratione ist -->
 
<!-- Einfluss von Kupfer auf den Zellextrakt, keinen negative Einfluss auf das CFPS so mit kann gezeigt werden dass dieses System relativ stabil gegenüber verschiedenen Kupferkonzentratione ist -->
 
<figure style="width: 600px">
 
<figure style="width: 600px">
<a href="https://static.igem.org/mediawiki/2015/3/37/Bielefeld-CeBiTec_Influence_of_copper_on_the_cell_extract.jpeg" data-lightbox="heavymetals" data-title="Influence of different copper concentrations on our crude cell extract. Error bars represent the standard deviation of three biological replicates."><img src="https://static.igem.org/mediawiki/2015/3/37/Bielefeld-CeBiTec_Influence_of_copper_on_the_cell_extract.jpeg" alt="Adjusting the detection limit"></a>
+
<a href="https://static.igem.org/mediawiki/2015/3/37/Bielefeld-CeBiTec_Influence_of_copper_on_the_cell_extract.jpeg" data-lightbox="heavymetals" data-title="Figure 7: Influence of different copper concentrations on our crude cell extract. Error bars represent the standard deviation of three biological replicates. "><img src="https://static.igem.org/mediawiki/2015/3/37/Bielefeld-CeBiTec_Influence_of_copper_on_the_cell_extract.jpeg" alt="Adjusting the detection limit"></a>
<figcaption>Influence of different copper concentrations on our crude cell extract. Error bars represent the standard deviation of three biological replicates.</figcaption>
+
<figcaption>Figure 7: Influence of different copper concentrations on our crude cell extract. Error bars represent the standard deviation of three biological replicates. </figcaption>
 
</figure></br>
 
</figure></br>
 
<p>As shown above copper has no negative influence on the functuality of our cell extact. Therefore a ralatively stable system for copper sensing is provided.</p>
 
<p>As shown above copper has no negative influence on the functuality of our cell extact. Therefore a ralatively stable system for copper sensing is provided.</p>
  
  
<p>First tests with specific cell extract and different copper concentrations lead to further tests and normilisations.</p>
+
<p>As shown in figure 7 copper has no negative influence on the functionality of our cell extract. Therefore a relatively stable system for copper sensing is provided.
 +
 
 +
First tests with specific cell extract and different copper concentrations lead to further tests and normalizations, illustrated in figure 8.</p>
 
<!-- Induktion mit Kupfer im Kupfer spezifischen Extrakt -->
 
<!-- Induktion mit Kupfer im Kupfer spezifischen Extrakt -->
  
Line 450: Line 454:
 
     <div class="col-md-6 text-center" style="margin-bottom: 50px">
 
     <div class="col-md-6 text-center" style="margin-bottom: 50px">
 
<figure style="width: 600px">
 
<figure style="width: 600px">
<a href="https://static.igem.org/mediawiki/2015/4/45/Bielefeld-CeBiTec_induction_copper_in_CueR_cell-extract.jpeg" data-lightbox="heavymetals" data-title="Copper specific cell extract made from <i>E. coli</i> cells which have already expressed the activator before cell extract production. Induction of copper inducible promoter without T7 in front of the operator site with different copper concentrations. Error bars represent the standard deviation of three biological replicates. "><img src="https://static.igem.org/mediawiki/2015/4/45/Bielefeld-CeBiTec_induction_copper_in_CueR_cell-extract.jpeg" alt="Adjusting the detection limit"></a>
+
<a href="https://static.igem.org/mediawiki/2015/4/45/Bielefeld-CeBiTec_induction_copper_in_CueR_cell-extract.jpeg" data-lightbox="heavymetals" data-title="Figure 8: Copper specific cell extract made from <i>E. coli</i> cells which have already expressed the activator before cell extract production. Induction of copper inducible promoter without T7 upstream of the operator site with different copper concentrations. Error bars represent the standard deviation of three biological replicates. "><img src="https://static.igem.org/mediawiki/2015/4/45/Bielefeld-CeBiTec_induction_copper_in_CueR_cell-extract.jpeg" alt="Adjusting the detection limit"></a>
<figcaption>Copper specific cell extract made from <i>E. coli</i> cells which have already expressed the activator before cell extract production. Induction of copper inducible promoter without T7 in front of the operator site with different copper concentrations. Error bars represent the standard deviation of three biological replicates.
+
<figcaption>Figure 8: Copper specific cell extract made from <i>E. coli</i> cells which have already expressed the activator before cell extract production. Induction of copper inducible promoter without T7 upstream of the operator site with different copper concentrations. Error bars represent the standard deviation of three biological replicates.  
 
</figure>  
 
</figure>  
 
</div>
 
</div>
 
     <div class="col-md-6 text-center" style="margin-bottom: 50px"><figure style="width: 600px">
 
     <div class="col-md-6 text-center" style="margin-bottom: 50px"><figure style="width: 600px">
<a href="https://static.igem.org/mediawiki/2015/4/4c/Bielefeld-CeBiTec_correction_induction_copper_in_cueR_cell-extract.jpeg" data-lightbox="heavymetals" data-title="Copper specific cell extract made from <i>E. coli</i> cells which have already expressed the activator before cell extract production. Induction of copper inducible promoter without T7 in front of the operator site with different copper concentrations. Error bars represent the standard deviation of three biological replicates. Data are normalized on coppers influence to the cell extract."><img src="https://static.igem.org/mediawiki/2015/4/4c/Bielefeld-CeBiTec_correction_induction_copper_in_cueR_cell-extract.jpeg" alt="Adjusting the detection limit"></a>
+
<a href="https://static.igem.org/mediawiki/2015/4/4c/Bielefeld-CeBiTec_correction_induction_copper_in_cueR_cell-extract.jpeg" data-lightbox="heavymetals" data-title="Figure 9: Copper specific cell extract made from <i>E. coli</i> cells which have already expressed the activator before cell extract production. Induction of copper inducible promoter without T7 in front of the operator site with different copper concentrations. Error bars represent the standard deviation of three biological replicates. Data are normalized on coppers influence to the cell extract. "><img src="https://static.igem.org/mediawiki/2015/4/4c/Bielefeld-CeBiTec_correction_induction_copper_in_cueR_cell-extract.jpeg" alt="Adjusting the detection limit"></a>
<figcaption>Copper specific cell extract made from <i>E. coli</i> cells which have already expressed the activator before cell extract production. Induction of copper inducible promoter without T7 in front of the operator site with different copper concentrations. Error bars represent the standard deviation of three biological replicates. Data are normalized on coppers influence to the cell extract.</figcaption>
+
<figcaption>Figure 9: Copper specific cell extract made from <i>E. coli</i> cells which have already expressed the activator before cell extract production. Induction of copper inducible promoter without T7 in front of the operator site with different copper concentrations. Error bars represent the standard deviation of three biological replicates. Data are normalized on coppers influence to the cell extract.</figcaption>
 
</figure>
 
</figure>
 
</div>
 
</div>
Line 463: Line 467:
 
<p>In addition to the native promoter, operator device as measured above reporter constructs under the control of T7 promoter were tested.</p>
 
<p>In addition to the native promoter, operator device as measured above reporter constructs under the control of T7 promoter were tested.</p>
  
<p>Fluorescences normalised on coppers influence to the cell extract are shown above.<p/>
+
<p>Fluorescence normalized on coppers influence to the cell extract are shown in figure 10 and figure 11.<p/>
  
 
<!--obrige Abbildung durch den errechneten Korrekturfaktor angepasst, da verschiedene Faktoren auf Zellextrakt wirken und so diesen beeinflussen.-->
 
<!--obrige Abbildung durch den errechneten Korrekturfaktor angepasst, da verschiedene Faktoren auf Zellextrakt wirken und so diesen beeinflussen.-->
Line 471: Line 475:
 
     <div class="col-md-6 text-center" style="margin-bottom: 50px">
 
     <div class="col-md-6 text-center" style="margin-bottom: 50px">
 
<figure style="width: 600px">
 
<figure style="width: 600px">
<a href="https://static.igem.org/mediawiki/2015/c/ce/Bielefeld-CeBiTec_induction_T7-copAP_copper_in_cueR_cell-extract.jpeg" data-lightbox="heavymetals" data-title="Copper specific cell extract made from <i>E. coli</i> cells which have already expressed the activator before cell extract production. Induction with different copper concentrations. Error bars represent the standard deviation of three biological replicates."><img src="https://static.igem.org/mediawiki/2015/c/ce/Bielefeld-CeBiTec_induction_T7-copAP_copper_in_cueR_cell-extract.jpeg" alt="Adjusting the detection limit"></a>
+
<a href="https://static.igem.org/mediawiki/2015/c/ce/Bielefeld-CeBiTec_induction_T7-copAP_copper_in_cueR_cell-extract.jpeg" data-lightbox="heavymetals" data-title="Figure 10: Copper specific cell extract made from <i>E. coli</i> cells which have already expressed the activator before cell extract production. Induction with different copper concentrations. Error bars represent the standard deviation of three biological replicates. "><img src="https://static.igem.org/mediawiki/2015/c/ce/Bielefeld-CeBiTec_induction_T7-copAP_copper_in_cueR_cell-extract.jpeg" alt="Adjusting the detection limit"></a>
<figcaption>Copper specific cell extract made from <i>E. coli</i> cells which have already expressed the activator before cell extract production. Induction with different copper concentrations. Error bars represent the standard deviation of three biological replicates.</figcaption>
+
<figcaption>Figure 10: Copper specific cell extract made from <i>E. coli</i> cells which have already expressed the activator before cell extract production. Induction with different copper concentrations. Error bars represent the standard deviation of three biological replicates. </figcaption>
 
</figure>
 
</figure>
 
</div>
 
</div>
 
  <div class="col-md-6 text-center" style="margin-bottom: 50px"><figure style="width: 600px">
 
  <div class="col-md-6 text-center" style="margin-bottom: 50px"><figure style="width: 600px">
<a href="https://static.igem.org/mediawiki/2015/0/01/Bielefeld-CeBiTec_correction_induction_T7-copAP_in_cueR_cell-extract.jpeg" data-lightbox="heavymetals" data-title="Copper specific cell extract made from <i>E. coli</i> cells which have already expressed the activator before cell extract production. Induction of copper inducible promoter with different copper concentrations. Error bars represent the standard deviation of three biological replicates. Data are normalized on coppers influence to the cell extract.."><img src="https://static.igem.org/mediawiki/2015/0/01/Bielefeld-CeBiTec_correction_induction_T7-copAP_in_cueR_cell-extract.jpeg" alt="Adjusting the detection limit"></a>
+
<a href="https://static.igem.org/mediawiki/2015/0/01/Bielefeld-CeBiTec_correction_induction_T7-copAP_in_cueR_cell-extract.jpeg" data-lightbox="heavymetals" data-title="Figure 11: Copper specific cell extract made from <i>E. coli</i> cells which have already expressed the activator before cell extract production. Induction of copper inducible promoter with different copper concentrations. Error bars represent the standard deviation of three biological replicates. Data are normalized on coppers influence to the cell extract. "><img src="https://static.igem.org/mediawiki/2015/0/01/Bielefeld-CeBiTec_correction_induction_T7-copAP_in_cueR_cell-extract.jpeg" alt="Adjusting the detection limit"></a>
<figcaption>Copper specific cell extract made from <i>E. coli</i> cells which have already expressed the activator before cell extract production. Induction of copper inducible promoter with different copper concentrations. Error bars represent the standard deviation of three biological replicates. Data are normalized on coppers influence to the cell extract.</figcaption>
+
<figcaption>Figure 11: Copper specific cell extract made from <i>E. coli</i> cells which have already expressed the activator before cell extract production. Induction of copper inducible promoter with different copper concentrations. Error bars represent the standard deviation of three biological replicates. Data are normalized on coppers influence to the cell extract. </figcaption>
 
</figure>
 
</figure>
 
</div>
 
</div>
Line 483: Line 487:
  
  
<p>Compared to the former fluorecence leves the T7 reporter device showed higher levels therefore a reporter device under the control of T7 promoter is more suitable for our CFPS.</p>
+
<p>Compared to the former fluorescence levels the T7 reporter device showed higher levels. Therefore a reporter device under the control of T7 promoter is more suitable for our CFPS.</p>
  
  
 
<!-- auch dieses Abbildung wurde mit dem Korrekturfaktor korrigiert-->
 
<!-- auch dieses Abbildung wurde mit dem Korrekturfaktor korrigiert-->
  
<p> After normalising on coppers influcence to the cell extract these differecnces were even more obvious.</p>
+
<p>After normalizing on coppers influence to the cell extract these differences were even more obvious.</p>
  
  

Revision as of 02:12, 19 September 2015

iGEM Bielefeld 2015


Heavy Metals

Results

Adjusting the detection limit
Influence of heavy metals on the growth of E.coli KRX. The tested concentrations were 20 µg/L lead, 60 µg/L mercury, 60 µg/L chromium, 80 µg/L nickel, 40 mg/L copper, which represent ten times the WHO guideline. The influence of arsenic was not tested as E. coli is known to be resistant to arsenic.

We tested our heavy metal biosensors in Escherichia coli as well as in our cell-free protein synthesis.

Prior to the in vivo characterization, we tested whether the heavy metals have a negative effect on the growth of E. coli.

As can be seen from the figure, we observed no significant difference between the growth in the presence of heavy metals and the controls. This first experiment showed us that in vivo characterization of these sensors is possible. Most cultivations for in vivo characterization were performed in the BioLector. Due to the accuracy of this device, we could measure our samples in duplicates. Subsequently, all functional biosensors were tested in vitro.

Click on the test strip for the results of our biosensor tests in E. coli and in our CFPS:

teststrip

To summarize all

We have characterized heavy metal sensors for arsenic, chromium, copper, lead, mercury and nickel. The results for our nickel characterization indicated that the constructed nickel sensor is not suitable for our test strip. The sensors for lead and chromium showed great potential, as they showed responses to chromium or lead, but require further optimization. Copper, our new heavy metal sensor, worked as expected and was able to detect different copper concentrations. The already well-characterized sensors for arsenic and mercury were tested as well. While the arsenic sensor worked well in vivo, it requires some omptimization for the use in vitro. Mercury showed that a fully optimized sensor works very well in our in vitro system and has the potential to detect even lower concentrations than in vivo.