Difference between revisions of "Team:Washington/Auxin"

 
(78 intermediate revisions by 3 users not shown)
Line 2: Line 2:
  
 
<html>
 
<html>
    <div id="menuContainer">
+
    <div id="menuContainer">
 
         <!-- This list is your menu, every list item is a menu button and nested listed become submenu buttons -->
 
         <!-- This list is your menu, every list item is a menu button and nested listed become submenu buttons -->
 
         <ul>
 
         <ul>
 
             <a href="https://2015.igem.org/Team:Washington">
 
             <a href="https://2015.igem.org/Team:Washington">
                 <li>Home</li>
+
                 <li>Home
 +
                  <ul>
 +
                    <li><a href="https://2014.igem.org/Team:Washington">UW 2014</a></li>
 +
                    <li><a href="https://2013.igem.org/Team:Washington">UW 2013</a></li>
 +
                    <li><a href="https://2012.igem.org/Team:Washington">UW 2012</a></li>
 +
                    <li><a href="https://2011.igem.org/Team:Washington">UW 2011</a></li>
 +
                    <li><a href="https://2010.igem.org/Team:Washington">UW 2010</a></li>
 +
                    <li><a href="https://2009.igem.org/Team:Washington">UW 2009</a></li>
 +
                    <li><a href="https://2008.igem.org/Team:University_of_Washington">UW 2008</a></li>
 +
                    <li><a href="https://2013.igem.org/Main_Page">iGEM Homepage</a></li>
 +
                  </ul>
 +
</li>
 
             </a>
 
             </a>
 
             <a href="https://2015.igem.org/Team:Washington/Auxin">
 
             <a href="https://2015.igem.org/Team:Washington/Auxin">
                 <li>Auxin
+
                 <li>Auxin  
                    <div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
+
                  <div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">  
                        <ul class="nav navbar-nav">
+
                    <ul class="nav navbar-nav">
 
                             <li>
 
                             <li>
                                 <a href="#" class="scroll-link" data-id="Description">Description</a>
+
                                 <a href="#" class="scroll-link" data-id="Introduction">Introduction</a>
 
                             </li>
 
                             </li>
 
                             <li>
 
                             <li>
                                 <a href="#" class="scroll-link" data-id="Experiments">Experiments</a>
+
                                 <a href="#" class="scroll-link" data-id="Methods">Methods</a>
 
                             </li>
 
                             </li>
 
                             <li>
 
                             <li>
Line 22: Line 33:
 
                             </li>
 
                             </li>
 
                             <li>
 
                             <li>
                                 <a href="#" class="scroll-link" data-id="Parts">Parts</a>
+
                                 <a href="#" class="scroll-link" data-id="Conclusion">Conclusion</a>
 
                             </li>
 
                             </li>
                        </ul>
+
                            <li>
                     </div>
+
                                <a href="#" class="scroll-link" data-id="Future_Direction">Future Direction</a>
 +
                            </li>
 +
                            <li>
 +
                                <a href=https://2015.igem.org/Team:Washington/Parts#Auxin">Biobrick</a>
 +
                            </li>
 +
                     </ul>
 +
                </div>
 
                 </li>
 
                 </li>
 
             </a>
 
             </a>
             <a href="https://2015.igem.org/Team:Washington/Aptamer">
+
             <a href="https://2015.igem.org/Team:Washington/Aptazyme">
                 <li>Aptamer 
+
                 <li>Aptazyme                             
 +
                    <ul>
 +
                            <li>
 +
                                <a href="https://2015.igem.org/Team:Washington/Aptazyme#Introduction">Introduction</a>
 +
                            </li>
 +
                            <li>
 +
                                <a href="https://2015.igem.org/Team:Washington/Aptazyme#Methods">Methods</a>
 +
                            </li>
 +
                            <li>
 +
                                <a href="https://2015.igem.org/Team:Washington/Aptazyme#Results">Results</a>
 +
                            </li>
 +
                            <li>
 +
                                <a href="https://2015.igem.org/Team:Washington/Aptazyme#Conclusion">Conclusion</a>
 +
                            </li>
 +
                            <li>
 +
                                <a href=https://2015.igem.org/Team:Washington/Parts#Aptazyme">Biobrick</a>
 +
                            </li>
 +
                    </ul>
 +
                </li>
 +
            </a>
 +
            <a href="https://2015.igem.org/Team:Washington/Paper_Device">
 +
                <li>Paper Device             
 
                     <ul>
 
                     <ul>
 
                         <li>
 
                         <li>
                             <a href="https://2015.igem.org/Team:Washington/Aptamer#Description">Description</a>
+
                             <a href="https://2015.igem.org/Team:Washington/Paper_Device#Introduction">Introduction</a>
 
                         </li>
 
                         </li>
 
                         <li>
 
                         <li>
                             <a href="https://2015.igem.org/Team:Washington/Aptamer#Experiments">Experiments</a>
+
                             <a href="https://2015.igem.org/Team:Washington/Paper_Device#Methods">Methods</a>
 +
                        </li>                           
 +
                            <li>
 +
                                <a href="https://2015.igem.org/Team:Washington/Design">Design</a>
 +
                            </li>
 +
                            <li>
 +
                                <a href="https://2015.igem.org/Team:Washington/Paper_Device#Results">Results</a>
 +
                            </li>
 +
                            <li>
 +
                                <a href="https://2015.igem.org/Team:Washington/Paper_Device#Conclusion">Conclusion</a>
 +
                            </li>
 +
                    </ul>
 +
                </li>
 +
            </a>
 +
            <a href="https://2015.igem.org/Team:Washington/Modeling">
 +
                <li>Modeling             
 +
                    <ul>
 +
                        <li>
 +
                            <a href="https://2015.igem.org/Team:Washington/Modeling#Paper_Device">Paper Device</a>
 
                         </li>
 
                         </li>
 
                         <li>
 
                         <li>
                             <a href="https://2015.igem.org/Team:Washington/Aptamer#Results">Results</a>
+
                             <a href="https://2015.igem.org/Team:Washington/Modeling#Aptazyme">Aptazyme</a>
 
                         </li>
 
                         </li>
 +
                    </ul>
 +
                </li>
 +
            </a>
 +
            <a href="https://2015.igem.org/Team:Washington/Practices">
 +
                <li>Human Practices             
 +
                    <ul>
 
                         <li>
 
                         <li>
                             <a href="https://2015.igem.org/Team:Washington/Aptamer#Parts">Parts</a>
+
                             <a href="https://2015.igem.org/Team:Washington/Practices#Outreach">Outreach</a>
 +
                        </li>
 +
                        <li>
 +
                            <a href="https://2015.igem.org/Team:Washington/Practices#Integrated">Integrated</a>
 
                         </li>
 
                         </li>
 
                     </ul>
 
                     </ul>
 
                 </li>
 
                 </li>
            </a>
 
            <a href="https://2015.igem.org/Team:Washington/Outreach">
 
                <li>Outreach</li>
 
 
             </a>
 
             </a>
 
             <a href="https://2015.igem.org/Team:Washington/Protocols">
 
             <a href="https://2015.igem.org/Team:Washington/Protocols">
                 <li>Protocols</li>
+
                 <li>Protocols
 +
                    <ul>
 +
                        <li>
 +
                            <a href="https://2015.igem.org/Team:Washington/Protocols#Experiments">Experiments</a>
 +
                        </li>
 +
                        <li>
 +
                            <a href="https://2015.igem.org/Team:Washington/Protocols#Safety">Safety</a>
 +
                        </li>
 +
                    </ul>
 +
                </li>
 
             </a>
 
             </a>
 
             <a href="https://2015.igem.org/Team:Washington/Team">
 
             <a href="https://2015.igem.org/Team:Washington/Team">
                 <li>Team                
+
                 <li>Team                        
 
                     <ul>
 
                     <ul>
 
                         <li>
 
                         <li>
Line 59: Line 130:
 
                         </li>
 
                         </li>
 
                         <li>
 
                         <li>
                             <a href="https://2015.igem.org/Team:Washington/Team#Attributions">Attributions</a>
+
                             <a href="https://2015.igem.org/Team:Washington/Attributions">Attributions</a>
 
                         </li>
 
                         </li>
 
                         <li>
 
                         <li>
 
                             <a href="https://2015.igem.org/Team:Washington/Team#Sponsors">Sponsors</a>
 
                             <a href="https://2015.igem.org/Team:Washington/Team#Sponsors">Sponsors</a>
 +
                        </li>
 +
                        <li>
 +
                            <a href="https://2015.igem.org/Team:Washington/Team#Judging_Form">Judging Form</a>
 
                         </li>
 
                         </li>
 
                     </ul>
 
                     </ul>
Line 69: Line 143:
 
         </ul>
 
         </ul>
 
     </div>
 
     </div>
    <!-- End of menu  -->
+
 
    <!-- Start of content -->
+
<div id="main">
    <div id="main">
+
 
         <div class="container clearfix">
 
         <div class="container clearfix">
 
             <div id="sidebar">
 
             <div id="sidebar">
Line 79: Line 152:
 
                         <ul class="nav navbar-nav" style="list-style-type: none;">
 
                         <ul class="nav navbar-nav" style="list-style-type: none;">
 
                             <li>
 
                             <li>
                                 <a href="#" class="scroll-link" data-id="Description">Description</a>
+
                                 <a href="#" class="scroll-link" data-id="Introduction">Introduction</a>
 
                             </li>
 
                             </li>
 
                             <li>
 
                             <li>
                                 <a href="#" class="scroll-link" data-id="Experiments">Experiments</a>
+
                                 <a href="#" class="scroll-link" data-id="Methods">Methods</a>
 
                             </li>
 
                             </li>
 
                             <li>
 
                             <li>
Line 88: Line 161:
 
                             </li>
 
                             </li>
 
                             <li>
 
                             <li>
                                 <a href="#" class="scroll-link" data-id="Parts">Parts</a>
+
                                 <a href="#" class="scroll-link" data-id="Conclusion">Conclusion</a>
 +
                            </li>
 +
                            <li>
 +
                                <a href="#" class="scroll-link" data-id="Future_Direction">Future Direction</a>
 +
                            </li>
 +
                            <li>
 +
                                <a href=https://2015.igem.org/Team:Washington/Parts#Aptazyme">Biobrick</a>
 
                             </li>
 
                             </li>
 
                             <li>
 
                             <li>
Line 97: Line 176:
 
                 </nav>
 
                 </nav>
 
             </div>
 
             </div>
 +
 
             <div id="contentContainer">
 
             <div id="contentContainer">
 
                 <!--This div will close on the page.-->
 
                 <!--This div will close on the page.-->
                 <h2>
+
                 <h1 align = "center">
                     <div id="Description">Overview</div>
+
                     <div id="Introduction">Introduction: Auxin Pathway</div>
                 </h2>
+
                 </h1>
                 <h2> Prior CRISPR transcriptional factors </h2>
+
                 <h2>CRISPR Transcriptional Factors</h2>
 
                  
 
                  
                 <p> CRISPR transcriptional factors are a breakthrough because they enable control of the expression of a particular gene – based on the gRNA. In these systems, the gRNA is attached to a CAS (CRISPR associated) protein, often CAS9These proteins are degraded so that they do not cleave the dsDNA.  The CAS9 protein is attached to either a repressor or an enhancer, which modulates the expression of the gene.  Ubiquitination enables a system that can change only once.  CRISPR transcriptional factors were first developed by Perez-Pinera et al. in 2013.</p>
+
                 <p align = "justify"> CRISPR transcriptional factors enable scientists to make targeted changes in gene expression through the use of a guide RNA (gRNA). The gRNA attaches to the CRISPR protein, and guides it to a specific DNA locus based on the sequence of the gRNAThe CRISPR proteins we used known as dCas9 were obtained from the Klavins lab, and are designed so that they do not cleave the DNA strands themselves, this dead CRISPR will instead bind tightly and prevent access to the gene by other proteins. This effectively disables transcription and translation of the targeted gene.  CRISPR transcriptional factors were first developed by Perez-Pinera et al. in 2013. </p>
  
                 <h2>
+
                 <h2>Auxin Background</h2>
                    <div id="Experiments">Auxin Background</div>
+
                </h2>
+
                <p> Auxin-IAA is a plant hormone that signals the development of leaves.  This molecule serves as a model molecule for detection by the CRISPR transcriptional factors because it can pass through the membrane and because it has well-characterized corresponding F-box (AFB2) and degron (deg1).  IAA is used in almost all plants, and is created by the from the amino acid tryptophan, and the synthesis is well characterized.</p>
+
<h2>
+
Design:
+
</h2>
+
  
<p>The pathway relies on CRISPR transcription factors to produce an indigo response to the plant hormone auxin-iaa (indole-3 acetic acid)</p>
+
              <p align = "justify" > Auxin is a class of plant hormone that is involved in developmental and behavioral signallingThis type of molecule serves as a good proof-of-concept for the detection of small-molecules by our model system. This is because Auxin can pass through the cell membrane and bind to an F-box protein (AFB2) and a degron (deg1), which will then target our dCas9 protein for degradation. Additionally, auxin is orthogonal to the biochemical machinery of the yeast, allowing for uninterrupted signal processing. Indole-3-acetic acid (IAA) is the specific Auxin molecule that we are using in our model system.</p>
<p>The Cas9 with a deactivated nuclease, or dCas9, binds to a gRNA strand that is complementary to the region of S. Cerivisiae that is near the inserted lacZ gene.  Mxi1 is a repressor protein.  In the presence of auxin, the degron protein recruits an F-box and a ubiquitin ligase (2). This E3 ubiquitin ligase tags the protein complex for degredation. </p>
+
  
<img src="https://static.igem.org/mediawiki/2015/8/8b/Auxin_washington_design.jpeg" height="200" width="1400">
+
                <h2> Model System Design </h2>
 +
 
 +
<p align = "justify">  The pathway relies on several components. A dead-CRISPR transcription factor (dCas9) is  fused to a degron domain (Deg1) and a strong repressor domain (MXI1). Along with a guide RNA designed to target an a promoter region for a signal response. Combined, the dCas9 complex along with the guide RNA will suppress the expression of lacZ. However, in the presence of IAA and an F-Box protein (AFB2), the dCas9 complex will be degraded and lacZ will be expressed leading to the production of beta-galactosidase. Thus, causing another small molecule X-gal to be converted into indigo when cleaved by beta-galactosidase and appear blue. The system is designed to produce a response (a color response in our case) to the presence of the small molecule indole-3-acetic acid. </p>
 +
 
 +
<p align = "center"> <img src="https://static.igem.org/mediawiki/2015/8/8b/Auxin_washington_design.jpeg" height="200" width="900"> </p>
 +
 
 +
<p style="font-size:12px" align = "justify">(1) dCas9-deg1-MXI1 binds to a guide RNA which targets a sequence of a lacZ promoter causing the expression of beta-galactosidase to be supprefont size = 2ssed. (2) Auxin binds to both AFB2 (which also helps recruit the ubiquitin ligase)  and deg1 simultaneously bringing the two into close proximity allowing the ubiquitin ligase to ubiquitinate the dCas9 construct. (3) lacZ expression is no longer suppressed allowing beta galactosidase to be produced and in the presence of X-gal, indigo is then formed. </p>
 +
 
 +
<p align = "center"> <img src="https://static.igem.org/mediawiki/2015/8/81/Igem_auxin_2.jpeg"> </p>
 +
 
 +
          <h2>
 +
                <div id="Methods"> Methods </div>
 +
          </h2>
 +
 
 +
<p align = "justify"> Since the system requires 4 components (AFB2, dCas9-deg1-MXI1, lacZ, gRNA) to be transformed into a single cell, our team decided to integrate each component into the yeast genome sequentially using a "cassette". A genomic integration has the advantage that cells are less likely to loose the genetic information once acquired into the cells genome. This saves time and effort and by-passes and potential problem with multiple dropout media for marker selections during each sequential transformation. The Klavins Lab at the University of Washington, allowed us access to their genetically modified Saccharomyces Cerevisiae strain that has a partially deleted uracil, histidine, leucine and tryptophan autotrophic gene, making the strain incapable of surviving without the aforementioned amino acids. With our strain selected we proceeded to sequentially transform each component of auxin detection pathway. </p>
 +
 
 +
<p align = "justify"> Each of the 4 genetic components of our system were contained within plasmids containing an ampicillin resistance marker and were cloned and amplified in E.Coli. Furthermore, each the component's plasmid also contained a different yeast autotrophic selection marker as followed: AFB2 Leucine, dCas9 Tryptophan, lacZ Uracil, gRNA Histidine. The plasmid is digested with PME1 creating the gene cassette which, is then transformed into our yeast strain and each autotrophic marker-gene construct would then integrate into the yeast genome. A sequential transformation was carried out in which a component was transformed and the new strain grown on selective (amino acid drop-out) media and then transformed with another component and grown on a different selective media sequentially until all 4 components were successfully integrated. The final strain could then be grown on a selective media with all 4 amino acid removed which, acts as a final check to ensure all components have been integrated into the genome. </p> 
 +
 
 +
<p align = "justify"> X-gal assays were run as followed. An aliquot of an overnight culture was diluted and incubated at 30C for 5 hours, for cultures containing the gRNA, auxin was added to the aliquot. After 5 hours, the cultures were pelleted and lysed and X-gal was added. The subsequent lysate was incubated at 37C. Blue color begins to show faintly after 30 minutes to 1 hour. A much deeper blue that is much easier to visualize was seen after 8-24 hours either at room temperature or in an incubator. </p>
 +
 
 +
<p style="font-size:12px" align = "center"> <img src="https://static.igem.org/mediawiki/2015/thumb/f/f4/AUXIN_TWO_SAMPLEs_bGAL_and_bGAL%2BgRNA.jpeg/320px-AUXIN_TWO_SAMPLEs_bGAL_and_bGAL%2BgRNA.jpeg"> </p>
 +
 
 +
<p style="font-size:12px" align = "center"> Two cell lysates in vials in which X-gal has been converted into indigo after a 24 hour incubation. Top vial shows that the system responds to the presence of auxin and produces beta-galactosidase. Bottom vial lacks cells that lack the gRNA and therefore does not require auxin for beta-galactosidase to be produced.</p>
 +
 
 +
<p style="font-size:12px" align = "center"> <img src="https://static.igem.org/mediawiki/2015/thumb/2/22/AUXIN_TWO_SAMPLES_one_with_and_one_without_auxin.jpeg/180px-AUXIN_TWO_SAMPLES_one_with_and_one_without_auxin.jpeg"> </p>
 +
 
 +
<p style="font-size:12px" align = "center"> Two cell lysates that contain X-gal and were incubated overnight at 37C. In the top sample auxin was not added to the pre-lysed culture and in bottom sample auxin was added. The top sample with auxin does not produces beta-galactosidase and X-gal does not turn into indigo while the bottom sample with auxin turns indigo. </p>
  
 
                 <h2>
 
                 <h2>
                     <div id="Results">What are the goals of the project?</div>
+
                     <div id="Results"> Results </div>
 
                 </h2>
 
                 </h2>
  
                <p>1. Develop a paper microfluidic device that houses yeast; it will provide adequate nutrients for cell growth, but will also be freeze-dried for long-term storage.
+
<p align = "justify" > The transformation of the lacZ gene containing a uracil marker proved successful as yeast cells grew on plates or in liquid media lacking uracil. Furthermore, X-gal assays further showed that a constitutively expressing lacZ gene was successfully transformed and integrated into our yeast strain's genome. The transformation and genomic integration of the gRNA, the dCas9 construct and the AFB2 sequences was partially successful. Cell growth on plates lacking uracil and histidine showed that the cells did contain the both a lacZ gene containing a uracil marker as well as a gRNA gene containing a histidine marker. However cell (containing both the lacZ and gRNA genes) cultures were assayed in parallel in which one culture had auxin added while another lacked auxin yet both assays turned blue on occasion while other times only culture that had auxin turned blue and those lacking it remaining colorless (white). It is suspected that this was caused by an integration of the correct autotrophic marker but not the correct construct. </p>
                <p>2. Create a detection system for the plant hormone auxin in which yeast produce a color in response to an auxin input; test it in cells growing on normal media.
+
                <p>3. Clone each part from this system into standard plasmids for submission to BioBrick registry.
+
                <p>4. Show that when grown on paper, yeast can reliably detect auxin.
+
                <p>5. Use aptamers (short DNA sequences) to detect for okadaic acid, a shellfish toxin that causes Diarrhetic Shellfish Poisoning.
+
                <p>6. Show that the aptamer system for detection can be implemented on our paper platform and reliably detect for okadaic acid.
+
  
                 <p>7. Improve safety of shellfish consumers in the NW and the world!
+
                 <h2>
 +
                    <div id="Conclusion">Conclusion</div>
 +
                </h2>
  
 +
<p align = "justify"> The system that our team developed does indeed work as expected albeit a few oddities. There is a visible signal, in the form of an indigo dye that is produced in response to the presences of a small molecule auxin. With this success in a liquid culture lysate we can now apply our system to a portable paper device. </p>
  
                <h2> Lab on a Strip: Developing a Novel Platform for Yeast Biosensors </h2>
 
                <h2>Overview </h2>
 
                <p>Biosensors for detecting small molecules have many applications in medicine, food, and the environment. Our project aims to combine the emerging fields of synthetic biology and paper diagnostics to create an affordable and accessible platform for a new class of biological sensors that could detect a wide variety of molecules. We first developed a paper microfluidic device housing Saccharomyces cerevisiae, which was then modified to accommodate two different biological detection systems. In one system, the Auxin/IAA-Degron pathway is used in conjunction with beta-galactosidase to produce a visible signal in response to the plant hormone auxin. In the other system, aptazymes, a combination of RNA aptamers and ribozymes, are used to bind theophylline and allow fluorescent protein to be produced. Both pathways serve as models for future real-world applications of our device, including the detection of marine biotoxins in the Pacific Northwest.  </p>
 
                <p>For commercial shellfish farmers and recreational hunters alike, marine biotoxins pose a significant threat to health and welfare. With this project, we aim to create an inexpensive and easy-to-use test kit for the detection of the shellfish toxin okadaic acid using engineered yeast strains and DNA aptamers on a paper device. We also hope that this project paves the way for a new class of biosensors capable of detecting a wide range of small molecules. </p>
 
 
                 <h2>
 
                 <h2>
                     <div id="Parts">What is the context of this research?</div>
+
                     <div id="Future_Direction">Future Direction</div>
 
                 </h2>
 
                 </h2>
                <p>Marine toxins are an increasing problem in Washington State waters. Produced in high concentrations by microorganisms during algae blooms, they are ingested by filter-feeding shellfish, causing illness and death in human consumers. Biotoxins are also difficult to detect; contrary to popular belief, algal blooms are not always the striking crimson of “red tides.” Thus, blooms may not be discovered until after a poisoned shellfish is found. The Washington State Department of Health and commercial shellfish farmers conduct periodic surveys of local beaches to catch contaminations early, but these methods are costly, time-consuming, and not always effective. This can especially pose a dilemma for individual shellfish hunters, who do not have the resources to screen their shellfish for toxins. </p>
+
                <h2>What is the significance of this project? </h2>
+
<h2>Introduce high-resolution, easily-quantifiable response gradient using ONPG</h2>
                <p>Our project aims to combine the emerging fields of synthetic biology and paper diagnostics to create an affordable, accessible, and accurate diagnostic test kit that would allow farmers and the public to test shellfish for common biotoxins. This “lab on a strip” will be a critical step forward in marine toxin detection, as it will cut nearly 20 hours off the time needed to obtain results, allowing farmers to screen at a lower cost and empowering individual hunters to confirm the safety of their shellfish. This is also the first project to attempt to grow yeast on a paper device, and if successful, could open the door to a wide range of similar biosensors. Such sensors would have applications in medicine, food, and the environment worldwide. </p>
+
 
                <h2>What are the goals of the project?</h2>
+
<p align = "justify">ONPG is a molecule used in a liquid assay and can be measured quantitatively with very high-resolution. This works by using a response factor that is able to dissolve in liquid solution and is thus measurable via photospectroscopy. Using this method, our team can precisely measure the impact of varying concentrations of small molecules on our system. We can then use the measured, overall response of our system to predict the amount of analyte present.</p>
           
+
 
 +
<h2>Alternatively, use a quicker and easily  visible response factor</h2>
  
 +
<p align = "justify">Currently, the response time of our system utilizing beta-galactosidase to cleave X-gal is somewhat lengthy taking at least 30 minutes to produce a response. By switching over to a rapidly produced, colored signal  response that is visible to the naked eye we hope to make the system easier to use. Colored response signals such as RFP are great because they can be visualized without the need for lab instruments.  </p>
 +
 +
<h2>Find or design a protein similar to AFB2 that can target other toxins/small molecules </h2>
 +
<p align = "justify">The limitations of our model system is that only Auxin like molecules can be detected. However, with future advancements in the field of protein engineering perhaps more complex molecules can be detected using our system. </p>
  
 +
         
 +
<br><br></br></br>
 +
           
 
             </div>
 
             </div>
 
         </div>
 
         </div>
 
         <!--These are the closing tags for div id="mainContainer" and div id="contentContainer". The corresponding opening tags appear in the template that is {{included}} at the top of this page.-->
 
         <!--These are the closing tags for div id="mainContainer" and div id="contentContainer". The corresponding opening tags appear in the template that is {{included}} at the top of this page.-->
 
     </html>
 
     </html>

Latest revision as of 03:33, 19 September 2015



Introduction: Auxin Pathway

CRISPR Transcriptional Factors

CRISPR transcriptional factors enable scientists to make targeted changes in gene expression through the use of a guide RNA (gRNA). The gRNA attaches to the CRISPR protein, and guides it to a specific DNA locus based on the sequence of the gRNA. The CRISPR proteins we used known as dCas9 were obtained from the Klavins lab, and are designed so that they do not cleave the DNA strands themselves, this dead CRISPR will instead bind tightly and prevent access to the gene by other proteins. This effectively disables transcription and translation of the targeted gene. CRISPR transcriptional factors were first developed by Perez-Pinera et al. in 2013.

Auxin Background

Auxin is a class of plant hormone that is involved in developmental and behavioral signalling. This type of molecule serves as a good proof-of-concept for the detection of small-molecules by our model system. This is because Auxin can pass through the cell membrane and bind to an F-box protein (AFB2) and a degron (deg1), which will then target our dCas9 protein for degradation. Additionally, auxin is orthogonal to the biochemical machinery of the yeast, allowing for uninterrupted signal processing. Indole-3-acetic acid (IAA) is the specific Auxin molecule that we are using in our model system.

Model System Design

The pathway relies on several components. A dead-CRISPR transcription factor (dCas9) is fused to a degron domain (Deg1) and a strong repressor domain (MXI1). Along with a guide RNA designed to target an a promoter region for a signal response. Combined, the dCas9 complex along with the guide RNA will suppress the expression of lacZ. However, in the presence of IAA and an F-Box protein (AFB2), the dCas9 complex will be degraded and lacZ will be expressed leading to the production of beta-galactosidase. Thus, causing another small molecule X-gal to be converted into indigo when cleaved by beta-galactosidase and appear blue. The system is designed to produce a response (a color response in our case) to the presence of the small molecule indole-3-acetic acid.

(1) dCas9-deg1-MXI1 binds to a guide RNA which targets a sequence of a lacZ promoter causing the expression of beta-galactosidase to be supprefont size = 2ssed. (2) Auxin binds to both AFB2 (which also helps recruit the ubiquitin ligase) and deg1 simultaneously bringing the two into close proximity allowing the ubiquitin ligase to ubiquitinate the dCas9 construct. (3) lacZ expression is no longer suppressed allowing beta galactosidase to be produced and in the presence of X-gal, indigo is then formed.

Methods

Since the system requires 4 components (AFB2, dCas9-deg1-MXI1, lacZ, gRNA) to be transformed into a single cell, our team decided to integrate each component into the yeast genome sequentially using a "cassette". A genomic integration has the advantage that cells are less likely to loose the genetic information once acquired into the cells genome. This saves time and effort and by-passes and potential problem with multiple dropout media for marker selections during each sequential transformation. The Klavins Lab at the University of Washington, allowed us access to their genetically modified Saccharomyces Cerevisiae strain that has a partially deleted uracil, histidine, leucine and tryptophan autotrophic gene, making the strain incapable of surviving without the aforementioned amino acids. With our strain selected we proceeded to sequentially transform each component of auxin detection pathway.

Each of the 4 genetic components of our system were contained within plasmids containing an ampicillin resistance marker and were cloned and amplified in E.Coli. Furthermore, each the component's plasmid also contained a different yeast autotrophic selection marker as followed: AFB2 Leucine, dCas9 Tryptophan, lacZ Uracil, gRNA Histidine. The plasmid is digested with PME1 creating the gene cassette which, is then transformed into our yeast strain and each autotrophic marker-gene construct would then integrate into the yeast genome. A sequential transformation was carried out in which a component was transformed and the new strain grown on selective (amino acid drop-out) media and then transformed with another component and grown on a different selective media sequentially until all 4 components were successfully integrated. The final strain could then be grown on a selective media with all 4 amino acid removed which, acts as a final check to ensure all components have been integrated into the genome.

X-gal assays were run as followed. An aliquot of an overnight culture was diluted and incubated at 30C for 5 hours, for cultures containing the gRNA, auxin was added to the aliquot. After 5 hours, the cultures were pelleted and lysed and X-gal was added. The subsequent lysate was incubated at 37C. Blue color begins to show faintly after 30 minutes to 1 hour. A much deeper blue that is much easier to visualize was seen after 8-24 hours either at room temperature or in an incubator.

Two cell lysates in vials in which X-gal has been converted into indigo after a 24 hour incubation. Top vial shows that the system responds to the presence of auxin and produces beta-galactosidase. Bottom vial lacks cells that lack the gRNA and therefore does not require auxin for beta-galactosidase to be produced.

Two cell lysates that contain X-gal and were incubated overnight at 37C. In the top sample auxin was not added to the pre-lysed culture and in bottom sample auxin was added. The top sample with auxin does not produces beta-galactosidase and X-gal does not turn into indigo while the bottom sample with auxin turns indigo.

Results

The transformation of the lacZ gene containing a uracil marker proved successful as yeast cells grew on plates or in liquid media lacking uracil. Furthermore, X-gal assays further showed that a constitutively expressing lacZ gene was successfully transformed and integrated into our yeast strain's genome. The transformation and genomic integration of the gRNA, the dCas9 construct and the AFB2 sequences was partially successful. Cell growth on plates lacking uracil and histidine showed that the cells did contain the both a lacZ gene containing a uracil marker as well as a gRNA gene containing a histidine marker. However cell (containing both the lacZ and gRNA genes) cultures were assayed in parallel in which one culture had auxin added while another lacked auxin yet both assays turned blue on occasion while other times only culture that had auxin turned blue and those lacking it remaining colorless (white). It is suspected that this was caused by an integration of the correct autotrophic marker but not the correct construct.

Conclusion

The system that our team developed does indeed work as expected albeit a few oddities. There is a visible signal, in the form of an indigo dye that is produced in response to the presences of a small molecule auxin. With this success in a liquid culture lysate we can now apply our system to a portable paper device.

Future Direction

Introduce high-resolution, easily-quantifiable response gradient using ONPG

ONPG is a molecule used in a liquid assay and can be measured quantitatively with very high-resolution. This works by using a response factor that is able to dissolve in liquid solution and is thus measurable via photospectroscopy. Using this method, our team can precisely measure the impact of varying concentrations of small molecules on our system. We can then use the measured, overall response of our system to predict the amount of analyte present.

Alternatively, use a quicker and easily visible response factor

Currently, the response time of our system utilizing beta-galactosidase to cleave X-gal is somewhat lengthy taking at least 30 minutes to produce a response. By switching over to a rapidly produced, colored signal response that is visible to the naked eye we hope to make the system easier to use. Colored response signals such as RFP are great because they can be visualized without the need for lab instruments.

Find or design a protein similar to AFB2 that can target other toxins/small molecules

The limitations of our model system is that only Auxin like molecules can be detected. However, with future advancements in the field of protein engineering perhaps more complex molecules can be detected using our system.