Difference between revisions of "Team:Berlin/senenergene/scenario"

Line 140: Line 140:
 
 
 
      <div class="project-headline-float">
 
      <div class="project-headline-float">
      <h4 class="blue-text project-headline">2. Application Scenario</h4>
+
      <h4 class="blue-text project-headline"><FONT FACE="Arial">2. Application Scenario</h4></FONT>
 
      </div>
 
      </div>
 
<strong>Introduction:<br/>
 
<strong>Introduction:<br/>

Revision as of 11:01, 18 September 2015

2. Application Scenario

Introduction:
Plastic is an environmentally harmful organic polymer that is present everywhere. The production of plastic material often results in the release of CO2, which exacerbates the Greenhouse effect. Within the last five decades, global plastic consumption rose from 5 to 100 million tons per year.[1] Most of this consumption is completely unnecessary and a waste of valuable resources, such as the 600 billion plastic bags that are being redundantly produced annually. Additionally, there is no integrated solid waste management, meaning that plastic waste is neither collected properly nor disposed of in an appropriate manner to avoid the negative impacts on the environment and public health. A good example of this is that out of the produced 14 million tons of Styrofoam only 1% is recycled every year![2] The massive amount of plastic waste that remains unrecycled partly ends up in the oceans. There, it accumulates through two underwater vortexes. One of these plastic accumulations is as big as central Europe and is called “Great Pacific Garbage Patch.” The main problem with this is that plastic cannot be degraded like natural resources. It is very durable and its decomposition can take up to 1000 years.[3] Plastics can be divided into macro- (> 5 mm in diameter) and microplastics (≤ 5 mm in diameter), each of which require different approaches for applications. Macroplastics can be found in plastic bags, bottles, car materials, etc. Microplastics, on the other hand, are present in various everyday products, like peelings and creams, and find their way into the wastewater treatment plants through bathroom drains, and house and industrial sewage. Research is already underway to develop some new techniques to convert macroplastics into fuels without harming the environment. This offers a very promising approach, as the plastic can serve for the production of resources that are in high demand.[4] As for treating microplastics, iGEM Berlin 2015 is constructing a modular filtering machine which can be applied in wastewater treatment plants to degrade microplastics in biodegradable compounds. What’s the problem?