Difference between revisions of "Team:Michigan/Design"

(Prototype team page)
 
Line 2: Line 2:
 
<html>
 
<html>
  
<h2>Design</h2>
+
<style type="text/css">
 +
 
 +
      p {
 +
              margin: 10px;
 +
      }
 +
 
 +
 
 +
</style>
 +
 
 +
 
 +
<h2 style="text-align: center">Design</h2>
 +
 
 +
<p>While there are many genetic switches for detecting proteins, for example, the lac operon and tet regulators, to our knowledge, every genetic switch is unique to the protein it detects. Aptapaper seeks to create a switch that could have the same logic adapted to any protein, similar to how toehold switches can be adapted and respond to any sequence of trigger RNA. Toehold switches refer to an RNA switch that works by sequestering the ribosomal binding site and start codon in a hairpin, while leaving a portion of what the RNA trigger binds to exposed in a “toehold” region.  This toehold region dramatically changes the kinematics of the system, making it much easier for the trigger to bind.  After the initial binding, the hairpin is “unzipped” by the trigger1.  Exact design specs of the well optimized second generation toehold design are detailed in Figure 1.  Because toehold switches can respond to any RNA trigger, Aptapaper attempted to use aptamers in conjunction with toehold switches to allow efficient and sensitive protein sensing. See different design approaches below.</p>
 +
 
  
<p>
 
By talking about your design work on this page, there is one medal criterion that you can attempt to meet, and one award that you can apply for. If your team is going for a gold medal by building a functional prototype, you should tell us what you did on this page. If you are going for the <a href="https://2015.igem.org/Judging/Awards#SpecialPrizes">Applied Design award</a>, you should also complete this page and tell us what you did.
 
</p>
 
  
<div class="highlightBox">
 
<h4>Note</h4>
 
<p>In order to be considered for the <a href="https://2015.igem.org/Judging/Awards#SpecialPrizes">Best Applied Design award</a> and/or the <a href="https://2015.igem.org/Judging/Awards#Medals">functional prototype gold medal criterion</a>, you must fill out this page.</p>
 
</div>
 
  
<p>This is a prize for the team that has developed a synthetic biology product to solve a real world problem in the most elegant way. The students will have considered how well the product addresses the problem versus other potential solutions, how the product integrates or disrupts other products and processes, and how its lifecycle can more broadly impact our lives and environments in positive and negative ways.</p>
 
  
<p>
 
If you are working on art and design as your main project, please join the art and design track. If you are integrating art and design into the core of your main project, please apply for the award by completing this page.
 
</p>
 
  
</div>
 
  
 
</html>
 
</html>

Revision as of 00:58, 19 September 2015

Design

While there are many genetic switches for detecting proteins, for example, the lac operon and tet regulators, to our knowledge, every genetic switch is unique to the protein it detects. Aptapaper seeks to create a switch that could have the same logic adapted to any protein, similar to how toehold switches can be adapted and respond to any sequence of trigger RNA. Toehold switches refer to an RNA switch that works by sequestering the ribosomal binding site and start codon in a hairpin, while leaving a portion of what the RNA trigger binds to exposed in a “toehold” region. This toehold region dramatically changes the kinematics of the system, making it much easier for the trigger to bind. After the initial binding, the hairpin is “unzipped” by the trigger1. Exact design specs of the well optimized second generation toehold design are detailed in Figure 1. Because toehold switches can respond to any RNA trigger, Aptapaper attempted to use aptamers in conjunction with toehold switches to allow efficient and sensitive protein sensing. See different design approaches below.