Team:elan vital korea/Integrated Human Practice








HUMAN PRACTICE
-Integrated Human Practice-


Threat of Antibiotics-Resistance and Countermeasures: Korea and US

The spread of antibiotic-resistant bacteria is a global health problem that affects nations across borders and boundaries and rapidly spreads throughout the world. These nightmare bacteria pose catastrophic threat to people everywhere in the world.

Our project is Early Detection of Antibiotic Resistant Bacteria using Quorum Sensing. It is closed related to the surveillance and containment of the pathogens. With the understanding, we have conducted case study of Korea and the US on the current status of antibiotic resistant bacteria infection and the countermeasures. We have gathered data on the spread of antibiotic-resistant bacteria and countermeasures taken as well as contemplated in Korea and the US. For this, we have relied on various materials and documentations, and some of them are translated from Korean.

Introduction

On November 11, 1945, Alexander Fleming delivered his Nobel Prize speech. This great man who discovered penicillin warned that bacteria could become resistant to these remarkable drugs. Indeed, the development of each new antibacterial drug has been followed by the detection of resistance to it. The development of resistance is a normal evolutionary process for microorganisms, but it is accelerated by the selective pressure exerted by widespread use of antibacterial drugs. Resistant strains are able to propagate and spread where there is non-compliance with infection prevention and control measures.

To The Top

Even considering regional discrepancy in the data quality as well as quantity, resistance patterns for the bacteria of public health importance is sufficient to alarm the world. For example, the proportion resistant of S.aureus to commonly used specific antibiotic drugs exceeded 50% in many countries. Furthermore, there are limitations in effective oral treatment options for some common community-acquired infections in several countries, and that there remain few, if any, treatment options for some common severe and health-care associated infections in many places.

High rates of MRSA imply that treatment for suspected or verified severe S. aureus infections, such as common skin and wound infections, must rely on secondline drugs in many countries, and that standard prophylaxis with first-line drugs for orthopaedic and other surgical procedures will have limited effect in many settings. Second-line drugs for S. aureus are more expensive; also, they have severe side-effects for which monitoring during treatment is advisable, increasing costs even further.

Unfortunately, there is at present no global consensus on methodology and data collection for Antibiotic Resistant Bacteria surveillance. Routine surveillance in most countries is often based on samples taken from patients with severe infections – particularly infections associated with health care, and those in which first-line treatment has failed. Community-acquired infections are almost certainly underrepresented among samples, leading to gaps in coverage of important patient groups.

It is urgent to develop effective implementation strategies in order to curtail the emergence and spread of AR, and to evaluate the effect of interventions.

Antibiotic resistance has a significant adverse impact on clinical outcomes and leads to higher costs due to consumption of health-care resources. Patients with infections caused by bacteria resistant to a specific antibacterial drug generally have an increased risk of worse clinical outcomes and death, and consume more healthcare resources, than patients infected with the same bacteria not demonstrating the resistance pattern in question.

Although surveillance on antibiotic resistant bacteria has been undertaken for many years in a number of high-income countries, there are still large gaps in knowledge about the status of surveillance capacities worldwide, particularly in resource-limited settings.

To The Top

Available data are insufficient to estimate the wider societal impact and economic implications when effective treatment for an infection is completely lost as a result of resistance to all available drugs. The overall health and economic burden resulting from acquired antibiotic resistant bacteria cannot be fully assessed with the presently available data; new methodologies are needed to more precisely assess the total impact of resistance, to better inform health policies and to prioritize the deployment of resources. However, even admitting the lack of reliable information on the financials, the overall cost is highly burden to all nations, even further to the less developed countries. For example, the yearly cost to the US health system alone has been estimated at US $21 to $34 billion dollars, accompanied by more than 8 million additional days in hospital. Because antibiotic resistant bacteria has effects far beyond the health sector, it was projected, nearly 10 years ago, to cause a fall in real gross domestic product (GDP) of 0.4% to 1.6%, which translates into many billions of today’s dollars globally.



KOREA

In Korea, Korean CDC collected antibiotic-resistance infection cases from hospitals, which shows that 41,883 patients (about 7% of the total hospitalized patients) were infected by antibiotic-resistant bacteria during the first half-year of 2014 (from January 1 to June 30, 2014).

(Source: Korea Center for Disease Control and Prevention, http://www.cdc.go.kr/search/sEngine.jsp?kwd=MRSA%EA%B0 %90%EC%97%BC)

KARMS released annual report in 2014 containing antibiotic resistance infection data gathered from hospitals as well as long term care facilities and small & medium sized clinics. Publishing such data is a clear evidence that the Korean government is keenly aware of the hazards of the antibiotic resistant bacteria and also shows its commitment to deal with the matter systematically. The government adopted a law on the Prevention and Containment of Infectious Diseases in Dec. 2010.

In accordance with the executive order of the law, antibiotic resistance infections including VRSA, VRE, MRSA, MRPA, MRAB, CRE were designated as “infections to be contained”. The annual reports deals with S. aureus, Enterococcus spp., S. pneumoniae, E. coli , K. pneumoniae , E. cloacae, P. aeruginosa , A. baumannii Following are the results: (Data from General Hospital (more than 300 beds))


Staphylococcus aureus

Medium Sized Hospital
Table * Antimicrobial resistance rates (%) of S. aureus isolated from hospitals

* Including cefoxitin, † Not tested, ‡ Trimethoprim-Sulfamethoxazole, , ∥ Quinupristin-Dalfopristin



To The Top

Figure * Antimicrobial resistance rates (%) of S. aureus isolated from general hospitals


Enterococcus faecalis

Table * Antimicrobial resistance rates (%) of E. faecalis isolated from general hospitals

* Not tested

Figure * Antimicrobial resistance rates (%) of E. faecalis isolated from general hospitals


Table * Antimicrobial resistance rates (%) of E. faecium isolated from general hospitals

* Not tested, † Quinupristin-Dalfopristin

Figure * Antimicrobial resistance rates (%) of E. faecium isolated from general hospitals


Streptococcus pneumoniae

Table * Antimicrobial resistance rates (%) of S. pneumoniae isolated from general hospitals

* Not tested, † Trimethoprim-Sulfamethoxazole

Figure * Antimicrobial resistance rates (%) of S. pneumoniae isolated from general hospitals


Major Trend of Antibiotic Resistance

As shown on the above data, among gram positive bacteria, antibiotic resistance of S. pneumoniae against penicillin G increased substantially in 2010 and reduced by 5.6% in 2012. On the other hand, antibiotic resistance of gram-negative bacteria has not much changed except A. baumannii that recorded 71.1% of resistance rate in 2010 and moderately decreased to 69.5% in 2012.


Figure * Resistance trends of Gram-positive cocci isolated from general hospitals

Trend of Antibiotic Resistance Infection (Small & Medium Sized Hospitals)

Staphylococcus aureus


Medium Sized Hospital Table * Antimicrobial resistance rates (%) of S. aureus isolated from hospitals

* Including cefoxitin. † The resistance rates were calculated from automation equipment R/I/S interpretations (upper) and MIC values (lower). ‡ Trimethoprim-Sulfamethoxazole, ∥ Quinupristin-Dalfopristin. § Vancomycin-intermediate S. aureus (VISA) ; 2007(0.2%), 2008(0.3%), 2009(0.2%), 2010(0.1%), 2011(0.0%), 2012(0.1%).

To The Top

Figure * Antimicrobial resistance rates (%) of S. aureus isolated from hospitals

Long Term Care Facility Table * Antimicrobial resistance rates (%) of S. aureus isolated from geriatric care hospitals



To The Top