Team:EPF Lausanne/Basic Part

EPFL 2015 iGEM bioLogic Logic Orthogonal gRNA Implemented Circuits EPFL 2015 iGEM bioLogic Logic Orthogonal gRNA Implemented Circuits

OUR BEST NEW PART




PAM rich URS J23117Alt promoter


Bikard et al. used dCas9-ω targeting the promoter PAM rich URS J23117, BBa_K1723001, in order to regulate gene expression [1], using gRNA (single guide RNA). By using our own dCas9-ω system we proved that this promoter can be activated or repressed (see results page). Now, on the model of this promoter, we designed a new, fully synthetic, promoter: PAM rich URS J23117Alt promoter, BBa_K1723005. We mutated the sequence of BBa_K1723001 between and outside the -10 and -35 sequences where the RNA Polymerase binds (see BBa_K1723005 registry page for more details), in order to have another promoter targeted by a different set of sgRNAs. The creation of this part, and its experimental validation (see results page), is very promising for us as it is the proof of the MUTABILITY of the promoters. We can now imagine of designing other new sequences to obtain others promoter/sgRNAs sets creating more and more different transistors-like elements in cells.

References

[1] Bikard, D., Jiang, W., Samai, P., Hochschild, A., Zhang, F., & Marraffini, L. A. (2013). Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic acids research, 41(15), 7429-7437.

EPFL 2015 iGEM bioLogic Logic Orthogonal gRNA Implemented Circuits