Difference between revisions of "Team:LASATX"

Line 2: Line 2:
 
<html>
 
<html>
 
<head>  
 
<head>  
<link href='https://fonts.googleapis.com/css?family=Slabo+27px' rel='stylesheet' type='text/css'>
+
<link href='https://fonts.googleapis.com/css?family=Lobster' rel='stylesheet' type='text/css'>
 
<link rel="stylesheet" href="http://code.jquery.com/ui/1.11.1/themes/smoothness/jquery-ui.css">
 
<link rel="stylesheet" href="http://code.jquery.com/ui/1.11.1/themes/smoothness/jquery-ui.css">
 
<link rel="stylesheet" href="https://2014.igem.org/Team:Imperial/Resources/CSS:wiki?action=raw&ctype=text/css">
 
<link rel="stylesheet" href="https://2014.igem.org/Team:Imperial/Resources/CSS:wiki?action=raw&ctype=text/css">
Line 57: Line 57:
  
 
<center>
 
<center>
<font-family: 'Slabo 27px', serif;>
+
<font-family: "Lobster", cursive;>
 
<h2>Liberal Arts and Science Academy High School</h2>
 
<h2>Liberal Arts and Science Academy High School</h2>
  

Revision as of 02:47, 18 September 2015


Home Team Project & Design Protocols Results Parts Notebook Human Practices Safety Attributions Medal Recs Collaboration

Liberal Arts and Science Academy High School

Thousands of people are injured from unintentional carbon monoxide poisoning each year. CO causes anoxia when inhaled, a condition characterized by severe deprivation of oxygen to the brain and blood; further cognitive impairments may develop as well. As this toxic, odorless gas can be produced by fuel-emitting vehicles or kitchen appliances, CO detectors are essential in every domestic and industrial setting.

Most commercially available CO detectors change color and sound alarms in the presence of a deleterious accumulation of the substance. However, while this may provide protection to some, we wanted to extend this system of defense to those who might not benefit from this mechanism (e.g. those who are blind and deaf). Our project aims to create a CO sensor that can give a fragrance to this odorless gas and thus warn those nearby through their sense of smell.

We introduced a carbon monoxide-sensing mechanism and a wintergreen fragrance (methyl salicylate) pathway into E. coli so that in the presence of CO, our engineered bacteria will emit a wintergreen smell. With a CO-induced wintergreen pathway, we hope to provide a working CO sensor that is useful not only to the general public but especially to those who find current CO sensors impractical.