Team:UCLA/Project/Protein Expression and Processing

iGEM UCLA



























Protein Expression and Processing

Background

Abstract

Following genetic design of our constructs, we must express and process them into functional materials. Here, we highlight the methods that we used to take our silks from DNA to proteins and ultimately to fibers and films.

Introduction

To create functionalized fibers, we co-spun the NCSilkGFP with native Bombyx mori silk. The NCSilkGFP was designed such that the N and C termini have affinity to b.mori silk, allowing it to bind to the native silk upon spinning.

Methodology

  1. In brief, we followed the standard process as highlighted in the literature (REF http://www.nature.com/nprot/journal/v6/n10/full/nprot.2011.379.html) to produce a concentrated aqueous solution, or dope, of commercially purchased b.mori silk. We then added aqueous NCSilkGFP to the concentrated b.mori dope so that the final solution had 750 grams of b.mori silk to 1 gram of NCSilkGFP. We then extruded this dope into a coagulation bath of 90% v/v isopropanol and water and collected the resulting fiber on a godet. Detailed steps are as follows:
  2. Fig 1:In ICA, the initiator of the growing DNA chains are immobilized on magnetic streptavidin beads to facilitate removal. The first monomer is ligated to the initiator. (Step A) Subsequent ligation steps incorporate capping oligos, which prevent the extension of incorrect chains: those that failed to ligate in the previous round. (Steps B, C) Ligation continues until the construct reaches the final desired length. The final step incorporates a terminator oligo. (Final Step) Only DNA constructs of the correct size can ligate to the terminator, as all incorrect constructs will have been capped.
  3. A basic biobrick for ICA consists of a gene monomer flanked by BsaI recognition and cleavage sites. While each of the core monomer is identical, the restriction sites are oriented such that digestion with BsaI yields distinct sticky ends for each of the three types of units. These pieces must be digested to reveal the sticky ends before assembly.
  4. Accessory pieces required in ICA include the initiator, streptavidin coated beads, the terminator, and the capping oligos.
    1. The initiator is a dsDNA fragment made by annealing two ssDNA oligos together. The initiator is designed such that one end is biotinylated, for conjugation to streptavidin coated beads. The other end has a sticky overhang and is designed to anneal to the forward sticky end of the ‘A-type’ monomer unit. This end is 5’-phosphorylated to enable ligation. The initiator also contains a primer binding site that can be used for PCR amplification, as well as other accessory sequences such as affinity tags and the biobrick prefix.
    2. Streptavidin coated beads serve as a solid support for the elongating DNA chain during ICA. The biotinylated end of the initiator binds to streptavidin to anchor the nascent construct. The ability to physically separate the DNA from solution is needed due to repeated wash and ligation steps used during ICA.
    3. The terminator is constructed similarly to the initiator, but lacks biotinylation. One end of the terminator is compatible to the reverse sticky end of the ‘C-type’ monomer unit. This end is 5’-phosphorylated to enable ligation. The terminator also contains a primer binding site that can be used for PCR amplification, as well as the biobrick suffix.
    4. The capping oligos are comprised of a single 5’-phosphorylated ssDNA oligo that can form a stable stem loop structure with a unique sticky end. There are three distinct caps, each of which can bind to the A, B, or C sticky ends
  5. In each extension step, the next sequential monomer (A, B, or C) is added onto the growing chain. Chains that failed to extend during the previous extension step are capped using a hair-pin oligo that prevents subsequent extension. These capped chains are still present in the mixture for the duration of ICA, but do not participate in any ligation event, and are not amplified in the final PCR. Each final construct is flanked by a biotinylated initiator oligo which allows immobilization onto streptavidin beads, and a terminator oligo. These two oligos provide primer annealing sites which can be used to amplify the sequence using conventional PCR.
  6. A generalized workflow is demonstrated below:
    1. The initiator, terminator, and capping oligos are prepared ahead of time by mixing the relevant oligos and ramping down from 95 C to form the working oligos.
    2. Monomers of each type (A, B, C) are digested from plasmid with BsaI and purified prior to ICA. These are termed working monomers.
    3. The initiator is attached to the streptavidin coated beads.
    4. An ‘A-type’ monomer is ligated to the end of the initiator. Afterwards, any unreacted fragments, as well as the ligase are washed off.
    5. Next, the ‘B-type’ monomer is ligated to the end of the growing chain. In this reaction mixture, an ‘A-type’ cap is also included, to terminate any chains that failed to extend in the previous ‘A-type’ ligation. Again, unreacted fragments are removed by washing.
    6. Next, the ‘C-type’ monomer is ligated. This reaction mixture contains the ‘B-type’ cap.
    7. Next the ‘A-type’ monomer is ligated. This time, the ‘C-type’ cap is also included in the mixture.
    8. This proceeds in a repetitive fashion until the desired construct length is reached.
    9. The final constructed is eluted off the beads. The eluate is used as a template for PCR to amplify the construct. Only complete constructs that contain the initiator and terminator are amplified. Capped constructs do not amplify.
    10. The amplified construct can now be used for downstream cloning.

Results

Using ICA, we have generated 10 silk constructs. These include constructs of pure MaSp2 ranging from 3-15 mers, pure MaSp1 of 9 and 12-mers and 12-mers of MaSp1/2 hybrids in 3 different ratios.

Future Directions

While we were able to construct many sequences of varying length and composition using ICA, we were unable to explore its maximum potential for cloning repetitive genes. We have not established an upper limit on the number of monomers able to be assemble using ICA. In addition, we have not explored the extended use of ICA to create extremely large (greater than 50 monomer units)

Achievements

  1. Successfully improved last year’s biobrick BBa_K1384000
    1. Redesigned MaSp1 and MaSp2 monomers with modified sticky ends, and cloned these into biobricks.
  2. Created a collection of parts to be used for Iterative Capped Assembly
  3. Demonstrated that ICA is adaptable to silk using our designed sticky ends.
    1. Optimized ICA for use with spider silk genes to enable fast, efficient assembly of repetitive constructs.
  4. Used ICA to assemble a variety of silk genetic constructs of different length and composition to examine their properties.
    1. Used ICA to create 10 different silk constructs ranging from 3-mers to 15-mers, and constructs with MaSp1 and MaSp2 in ratios of [1:2], [1:1] and [2:1].

References

Briggs A., Rios X., Chari R., Luhan Y., Zhang F., Mali P., and Church G. Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acids Research. 2012;40(15): e117

Hinman, M.B., Lewis, R. Isolation of a clone encoding a second dragline silk fibroin. Nephila clavipes dragline silk is a two-protein fiber. J. Biol. Chem. 1992;267: 19320–19324.

Tokareva O., Michalczechen-Lacerda V., Rech E., and Kaplan D. Recombinant DNA production of spider silk proteins. Microbial Biotechnology. 2013;6(6): 651-663

Xu, M., Lewis, R.V. Structure of a protein superfiber: spider dragline silk. PNAS;1990;87, 7120.

FIGURES: I DON'T KNOW WHERE TO PUT THEM

Fig 1:In ICA, the initiator of the growing DNA chains are immobilized on magnetic streptavidin beads to facilitate removal. The first monomer is ligated to the initiator. (Step A) Subsequent ligation steps incorporate capping oligos, which prevent the extension of incorrect chains: those that failed to ligate in the previous round. (Steps B, C) Ligation continues until the construct reaches the final desired length. The final step incorporates a terminator oligo. (Final Step) Only DNA constructs of the correct size can ligate to the terminator, as all incorrect constructs will have been capped.
Fig 2:Downstream Cloning after Iterative Capped Assembly. After elution from the beads, the ICA constructs are amplified using PCR primers that anneal to the initiator and the terminator. These primer binding sites are unique in the construct, and can be found nowhere else in the sequence. The only constructs that are amplified are those that have the initiator and terminator. All other constructs, while present, are excluded from amplification. After amplification, the construct can be cloned into a vector using traditional techniques.
Fig 4:Schematic of examples of initiator (a), terminator (b), and capping oligos (c), used in our ICA project. The cap shown has the B-type sticky end.
Fig 5:Schematic of the three types of sticky ends we designed for ICA. Sticky end A is 5’-AGTT-3’. Sticky end B is 5’-TGTC-3’. Sticky end C is 5’-CGTG-3’. An assembled 3-mer construct AB+BC+CA is shown as an example of how these biobricks would be used.
Fig 6:Gel image of constructs we created this summer using ICA. pSB1C3 Plasmids containing the sequence verified construct were digested using XbaI and PstI. Results were run on 1% TAE gel. The expected band size for the pSB1C3 is ~2070. Expected sizes for inserts fragments are indicated on the right hand side.