Difference between revisions of "Team:UNITN-Trento/Test"

m
m
Line 5: Line 5:
 
</html>{{UNITN-Trento/globalIncluder}}<html>
 
</html>{{UNITN-Trento/globalIncluder}}<html>
 
<script src="https://2015.igem.org/Template:UNITN-Trento/JSModernizer?action=raw&ctype=text/javascript"></script>
 
<script src="https://2015.igem.org/Template:UNITN-Trento/JSModernizer?action=raw&ctype=text/javascript"></script>
<script src="https://2015.igem.org/Template:UNITN-Trento/JSscrollTo?action=raw&ctype=text/javascript"></script>  
+
<script src="https://2015.igem.org/Template:UNITN-Trento/JSscrollTo?action=raw&ctype=text/javascript"></script>
+
 
<div id="super_wrap">  
 
<div id="super_wrap">  
 
<div class="no-sidebar">
 
<div class="no-sidebar">
Line 14: Line 14:
 
<header id="header"></html>
 
<header id="header"></html>
 
{{UNITN-Trento/mainMenu}}
 
{{UNITN-Trento/mainMenu}}
<html><script>jQuery('#menulin_project, #menulin_project_description').addClass('current');</script></header>
+
<html><script>jQuery('#menulin_more, #menulin_more_human').addClass('current');</script></header>
 
<!-- Main -->
 
<!-- Main -->
<style>.faabig:before,.faabig:after{font-size:1.8em; margina:0;} .faabig{position:absolute; right:0; top:0.9em;} .header4{position:relative; border:0 !important;} .header4 span {  border-bottom: 1px dotted #AAA;  display: block;  padding-bottom: 5px;  margin-right: 1.7em;}</style>
+
<section id="cta" style="background-image:url('https://static.igem.org/mediawiki/2015/f/fe/Unitn_pics_cta_projectdescription.jpg');" data-stellar-background-ratio="0.4">
+
<section id="cta" data-stellar-background-ratio="0.4" style="background-image:url('https://static.igem.org/mediawiki/2015/8/89/Unitn_pics_cta_notebook.jpg');">
 
<header>
 
<header>
<h2><strong>Solar pMFC</strong></h2>
+
<h2><strong>Where do we waste energy?</strong></h2>
<p> A Microbial Fuel Cell with a light-driven <span style="font-style:italic">E. coli</span> engine.  </p>
+
<p> A brief study on energy and the ways to spare it </p>
 
</header>
 
</header>
 
</section>
 
</section>
 
 
<article id="main">  
+
<article id="main">
 
<section class="wrapper style4 container" style="margin-top:1em;">
 
<section class="wrapper style4 container" style="margin-top:1em;">
 
<!-- Content -->
 
<!-- Content -->
 
<div class="content">
 
<div class="content">
 
<header>
 
<header>
<h3 class="wow fadeInDown">Solar <span style="text-transform:lowercase">p</span>MFC</h3>
+
<h3 class="wow fadeInDown">Where's our energy going?</h3>
 
</header>
 
</header>
<p style="margin-bottom:1em;">Microbial Fuel Cells (MFCs) are bio-electrochemical systems that drive current by using bacteria, that are isolated often times from waste waters or soil. Modeling the metabolism and electron transfer strategies of the bacteria living in waste waters through a controlled system based on a single species can help to optimize and enhance the MFCs technological landscape.Our idea is to optimize MFC’s platform using an engineered E. coli that exploits sunlight to live better under stressful conditions and that has an increased electron production.</p>
+
<div class="row">
<a class="fancybox" rel="group" href="https://static.igem.org/mediawiki/2015/0/05/Unitn_pics_project_mfc_martin_thumb.jpg" style="position:relative; margin-top:0; background-size:cover;"><img src="https://static.igem.org/mediawiki/2015/0/01/Unitn_pics_project_scheme1.jpg" class="wow zoomIn" style="width:100%; max-width:1186px;"></img>
+
<div class="10u 12u(narrower)">
+
<p>About 80% of the world population has access to electricity.  This number will increase, as more area become developed and urbanized. Different countries have different energy needs due to their economy and development and therefore the consumption of energy varies significantly. For example, in Europe and in the US one of the main area of energy consumption is domestic (houses and office spaces), while in Asia the industry is the major area of energy use. However, in all the three continents domestic energy consumption range from 30% to 40% of the total energy use.</p>
<img src="https://static.igem.org/mediawiki/2015/8/82/Unitn_pics_project_scheme2.png" style="position:absolute; width:45%; bottom:25px; right:20px; visibility:hidden;" class="wow zoomIn delay06"></img>
+
</a>
+
<p style="margin-top:1em;">A typical MFC is composed of two separate chambers, the anode and the cathode, separated by a proton exchange membrane (PEM). Bacteria are grown in the anode under anaerobic condition.  The electrons are the product of the bacteria metabolism. The lack of oxygen as acceptor enables the electrons to be transferred to the electrode. In the cathode, electrons combine with oxygen and protons to form water.</p>
+
</div>
+
</section>
+
+
<section class="wrapper style4 container">
+
<!-- Content -->
+
<div class="content">
+
<header>
+
<h3 class="wow fadeInDown">How it works</h3>
+
</header>
+
+
<div class="row" >
+
<div class="6u 12u(narrower) wow fadeInLeft">
+
<h4 class="header4 wow flipInX delay05"><span>Life in the anode</span> <i class="faabig flaticon-bacteria3"></i></h4>
+
+
<p style="clear:both;">In the anode there is no oxygen and bacteria must survive under anaerobic conditions. Our system uses E. coli as the model organism. E. coli is a facultative anaerobic bacterium, able to live without oxygen undergoing fermentation. In these conditions, the bacterial metabolism is slowed down and thus affecting the electrons production. Our idea is to increase E. coli viability in the anaerobic anode, in order to optimize electricity production.</p>
+
 
</div>
 
</div>
 
 
<div class="6u 12u(narrower) wow fadeInRight">
+
<div class="2u 12u(narrower)">  
<h4 class="header4 wow flipInX delay05"> <span> Exploiting sunlight power: Proteorhodopsin </span><i class="faabig flaticon-sunbeam "></i> </h4>
+
<div href="#" class="rotate-box square-icon" style="text-align:center;">
<p style="clear:both;">Proteorhodopsin (PR) is a light-powered proton pump that belongs to the rhodopsin family. This 7-transmembrane protein exploits light to create an outward proton gradient, increasing the proton motive force (pmf) across the membrane. The generated pmf can subsequently power cellular processes. In particular, PR supports a light-driven ATP synthesis as proton reenter the cell through the H+-ATP synthetase complex. Therefore PR should increase the lifespan of E.coli and the electron flow under anaerobic conditions.</p>
+
<span class="rotate-box-icon"> 90 %</span>  
 +
</div>  
 +
<p>Test Test Test</p>
 
</div>
 
</div>
</div>
+
</div>  
 
 
 
<div class="row">
 
<div class="row">
<div class="6u 12u(narrower) wow fadeInLeft">
+
<div class="12u 12u(narrower) captionbox" style="max-width:950px;">
<h4 class="header4 wow flipInX delay05"> <span>Retinal-producer: blh</span> <i class="faabig flaticon-atom27"></i></h4>
+
<a class="fancybox" rel="group" href="https://static.igem.org/mediawiki/2015/1/16/Unitn_pics_2015_figura1.png" title="Distribution of Energy consumption in Asia, Europe, and USA"><img src="https://static.igem.org/mediawiki/2015/1/10/Unitn_pics_2015_figura1_thumb.png" alt="" style="width:100%;"/></a>
<p style="clear:both;">Proteorhodopsin needs retinal as chromophore. In the MFC, PR-engineered E. coli can be supplemented with all-trans-retinal. A cheaper solution is to engineer a retinal-producer E. coli with β-carotene 15,15’-dioxygenase (encoded by the gene blh), an enzyme that splits one molecule of β-carotene into two molecules of retinal. </p>
+
<p class="image_caption"><span>Distribution of Energy consumption in Asia, Europe, and USA</span> Data are elaborated from [1], [2] and [3]</p>
+
<h4 class="header4 wow flipInX delay05">  <span>pncB: an electron producer booster</span> <i class="faabig flaticon-atomic4"></i></h4>
+
<p style="clear:both;">We planned to increase electrons production by over-expressing pncB. This gene encodes for the enzyme NAPRTase (nicotinic acid phosphorbosyl-transferase) that catalyzes the formation of nicotinate mono-nucleotide, a direct precursor of NAD, starting from NA. The presence of higher levels of NAD should push the cell to produce more electron carriers molecules (NADH), thus increasing electricity.</p>
+
</div>
+
 
 
<div class="6u 12u(narrower) wow fadeInRight">
 
<h4 class="header4 wow flipInX delay05"> <span>How can electrons be stolen?</span><i class="faabig flaticon-chemistry33"></i></h4>
 
<p style="clear:both;">Electrons can be stolen by exogenous mediators or by expressing heterologous-cytochrome in E. coli. Shewanella odenensis Mtr electrons transport pathway transfers metabolic electrons across the double membrane. Electrons are transported from CymA to MtrA and from MtrA to MtrC through the MtrCAB complex. The electrons coming out from MtrC are in direct contact with the electrodes. Alternatively, electrons can be transferred to the electrodes by exogenous chemical redox molecules called mediators (e.g. neutral red and methylen blue).</p>
 
 
</div>
 
</div>
</div>
+
</div>
</div>
+
</section>
+
<section class="wrapper style4 container">
+
<!-- Content -->
+
<div class="content">
+
<header>
+
<h3 class="wow fadeInDown">A glance into the future </h3>
+
</header>
+
 
 
<p>MFCs provide new opportunities for the sustainable energy production, a rapidly evolving technology. In particular, our controlled and self-sustainable platform could have many future applications. We envision that our Solar pMFCs will become a valid cheaper and greener alternative to modern photovoltaic panels. Solar energy activates the system, that provides electricity to sustain domestic needs.</p>
+
</div>
+
</div>  
 
</section>
 
</section>
 +
 
</article>
 
</article>
  
Line 95: Line 65:
  
 
<!-- Scripts -->  
 
<!-- Scripts -->  
<script>$(function()
 
{new WOW().init();
 
});
 
</script>
 
 
</div>
 
</div>
 
</div>
 
</div>
 
</html>
 
</html>

Revision as of 20:56, 11 September 2015

Where do we waste energy?

A brief study on energy and the ways to spare it

Where's our energy going?

About 80% of the world population has access to electricity.  This number will increase, as more area become developed and urbanized. Different countries have different energy needs due to their economy and development and therefore the consumption of energy varies significantly. For example, in Europe and in the US one of the main area of energy consumption is domestic (houses and office spaces), while in Asia the industry is the major area of energy use. However, in all the three continents domestic energy consumption range from 30% to 40% of the total energy use.

90 %

Test Test Test

Distribution of Energy consumption in Asia, Europe, and USA Data are elaborated from [1], [2] and [3]