Difference between revisions of "Team:USTC/Results"

Line 2: Line 2:
 
<html>
 
<html>
 
<div class="Nav2nd row white z-depth-1">
 
<div class="Nav2nd row white z-depth-1">
     <div class="Nav1th col s2 blue darken-3">
+
     <div class="Nav1th col s2 blue darken-3" >
         <a class="dropdown-button btn white-text" data-beloworigin="true" data-hover="true" href="#!"
+
         <a class="dropdown-button btn white-text" data-beloworigin="true"data-hover="true" href="#!" data-activates="Nav-dropdown" >TUTORIALS<i class="material-icons">arrow_drop_down</i></a>
          data-activates="Nav-dropdown">RESULTS<i class="material-icons">arrow_drop_down</i></a>
+
      </div>
    </div>
+
 
 
     <div class="col s10" style="z-index:2;">
 
     <div class="col s10" style="z-index:2;">
        <ul class="tabs tabs-wrapper transparent">
+
      <ul class="tabs tabs-wrapper transparent">
            <li class="tab col l2 m2 s2">
+
        <li class="tab col s3">
                <a href="#Overview" class="blue-text active waves-effect waves-light">Overview</a>
+
          <a href="#Instructional-Video" class="blue-text active waves-effect waves-light">Instructional Video</a>
            </li>
+
        </li>
            <li class="tab col l2 m2 s2">
+
        <li class="tab col s3 ">
                <a href="#Permeability_Improvement"
+
          <a href="#Instruction-manual" class="blue-text waves-effect waves-light">Instruction manual</a>
                  class="blue-text waves-effect waves-light">Permeability Improvement</a>
+
        </li>
            </li>
+
        <li class="tab col s3">
            <li class="tab col l2 m2 s2">
+
          <a href="#Make-Your-Own" class="blue-text waves-effect waves-light">Make Your Own</a>
                <a href="#Chemotaxis_Modification_and_ROSE" class="blue-text waves-effect waves-light">Chemotaxis
+
        </li>
                    & ROSE</a>
+
      </ul>
            </li>
+
 
+
            <li class="tab col l2 m2 s2">
+
                <a href="#Adhesion_Assay" class="blue-text waves-effect waves-light">Adhesion Assay</a>
+
            </li>
+
            <li class="tab col l2 m2 s2">
+
                <a href="#Film_Determination" class="blue-text waves-effect waves-light">Film Determination</a>
+
            </li>
+
        </ul>
+
 
     </div>
 
     </div>
 
</div>
 
</div>
 +
 
<ul id='Nav-dropdown' class='dropdown-content'>
 
<ul id='Nav-dropdown' class='dropdown-content'>
    <li><a href="https://2015.igem.org/Team:USTC" class="waves-effect waves-light">Home</a></li>
+
  <li><a href="https://2015.igem.org/Team:USTC" class="waves-effect waves-light">Home</a></li>
    <li><a href="https://2015.igem.org/Team:USTC/Description" class="waves-effect waves-light">Project</a></li>
+
  <li><a href="https://2015.igem.org/Team:USTC/Description" class="waves-effect waves-light">Project</a></li>
    <li><a href="https://2015.igem.org/Team:USTC/Modeling" class="waves-effect waves-light">Modeling</a></li>
+
  <li><a href="https://2015.igem.org/Team:USTC/Modeling" class="waves-effect waves-light">Modeling</a></li>
    <li><a href="https://2015.igem.org/Team:USTC/Achievements" class="waves-effect waves-light">Achivements</a></li>
+
  <li><a href="https://2015.igem.org/Team:USTC/Achievements" class="waves-effect waves-light">Achivements</a></li>
    <li><a href="https://2015.igem.org/Team:USTC/Tutorials" class="waves-effect waves-light">Tutorials</a></li>
+
  <li><a href="https://2015.igem.org/Team:USTC/Measurement" class="waves-effect waves-light">Measurement</a></li>
    <li><a href="https://2015.igem.org/Team:USTC/Notebook" class="waves-effect waves-light">NoteBook</a></li>
+
  <li><a href="https://2015.igem.org/Team:USTC/Software" class="waves-effect waves-light">Software</a></li>
    <li><a href="https://2015.igem.org/Team:USTC/Safety" class="waves-effect waves-light">Safety</a></li>
+
  <li><a href="https://2015.igem.org/Team:USTC/Parts" class="waves-effect waves-light">Parts</a></li>
    <li><a href="https://2015.igem.org/Team:USTC/Practices" class="waves-effect waves-light">Policy&Practices</a></li>
+
  <li><a href="https://2015.igem.org/Team:USTC/Tutorials" class="waves-effect waves-light">Tutorials</a></li>
    <li><a href="https://2015.igem.org/Team:USTC/Collaborations" class="waves-effect waves-light">Collaborations</a></li>
+
  <li><a href="https://2015.igem.org/Team:USTC/Notebook" class="waves-effect waves-light">NoteBook</a></li>
    <li><a href="https://2015.igem.org/Team:USTC/Team" class="waves-effect waves-light">Team</a></li>
+
  <li><a href="https://2015.igem.org/Team:USTC/Safety" class="waves-effect waves-light">Safety</a></li>
    <li><a href="https://2015.igem.org/Team:USTC/Attributions" class="waves-effect waves-light">Attributions</a></li>
+
  <li><a href="https://2015.igem.org/Team:USTC/Practices" class="waves-effect waves-light">Policy&Practices</a></li>
 +
  <li><a href="https://2015.igem.org/Team:USTC/Team" class="waves-effect waves-light">Team</a></li>
 +
  <li><a href="https://2015.igem.org/Team:USTC/Collaborations" class="waves-effect waves-light">Collaborations</a></li>
 +
  <li><a href="https://2015.igem.org/Team:USTC/Attributions" class="waves-effect waves-light">Attributions</a></li>
 
</ul>
 
</ul>
  
 +
<div class="container">
 +
<div id="Instructional-Video" class="row" style="position:relative">
 +
              <video class="responsive-video" controls style="width:100%">
 +
                    <source src="https://static.igem.org/mediawiki/2015/9/92/USTC_Tutorials.mp4" type="video/mp4">
 +
              </video>   
 +
</div>
 +
</div>
 
<div class="row">
 
<div class="row">
    <div class="col offset-m1 offset-l2 s12 m10 l8">
+
  <div class="col offset-m1 offset-l2 s12 m10 l8">
        <div id="Overview" class="row">
+
   
            <div class="card hoverable">
+
 
                <div class="col s12">
+
                    <div class="card-content">
+
                        <p>That is so amazing! We finally made NDM this year! The results page will deliver the fresh
+
                            results from us. Our results include these sections:</p>
+
                        <ul>
+
                            <li><p>Permeability Improvement: In this section, we will demonstrate our synthetic
+
                                bioloical base constrcuction, characterization of permeability improvement. This is the
+
                                fundation of CACCI construction, as well as NDM.</p>
+
                            </li>
+
                            <li><p>Chemotaxis Modification: This section introduces results of chemotaxis
+
                                engineering.</p>
+
                            </li>
+
                            <li><p>Adhesion Assay: This section explicitly explain adhesion methods, adhesion dynamics
+
                                and adhesion protocols recommended for all users, which is an important part of our
+
                                results.</p>
+
                            </li>
+
                            <li><p>Film Determination: This section introduced how we finally determinated our film,
+
                                from plastic film to our final candidate. See how difficult and interesting it is!</p>
+
                            </li>
+
                            <li><p>Calibration: This is our final step demonstrating the feasibility of NDM. See how
+
                                perfect our project is!</p>
+
                            </li>
+
                        </ul>
+
                        <p>Want to get them now? Click their title directly!</p>
+
  
                    </div>
+
    <div id="Instruction-manual" class="row">
                </div>
+
      <div class="card hoverable">
 +
        <div class="col s12">
 +
          <div class="card-content">
 +
            <p>
 +
              Thank you for using the SPRING, a fast optical interference detecting device.
 +
            </p>
 +
            <p>
 +
Before you using SPRING, please carefully read this instruction manual to fully understand the operations and the attentions.
 +
            </p>
  
            </div>
 
        </div>
 
 
        <div id="Permeability_Improvement" class="row">
 
            <div class="card hoverable">
 
                <div class="row">
 
                    <div class="col s12 m9">
 
                        <div class="card-content">
 
                            <h3 id="Extraction_of_Permeability_Improvement_Fragements" class="scrollspy">Extraction of
 
                                Permeability Improvement Fragements</h3>
 
 
                            <p>We successfully get
 
                                gene fragements that are used for improving bacterial permeability, which including,
 
                            </p>
 
                            <ul>
 
                                <li>SCVE, a viroporin originally from SARS virus, is synthesized by Sangon Co. ctd.</li>
 
                            </ul>
 
                            <p><img src="https://static.igem.org/mediawiki/2015/1/1d/Ustc-scve.jpeg"
 
                                    alt="Figure 1: Extraction of SCVE fragement"></p>
 
                            <ul>
 
                                <li>OprF, a bigger porin compared with OmpF in <em>E. coli</em>, is extracted from <em>P.aeruginosa,
 
                                    PAO1</em> genome by PCR.
 
                                </li>
 
                            </ul>
 
                            <p><img src="https://static.igem.org/mediawiki/2015/6/6d/Ustc-t7oprf_lac-chez.jpeg"
 
                                    alt="Figure 2: Extraction of OprF fragement"></p>
 
                            <ul>
 
                                <li><p>T7 is a strong promoter which we got form Parts Registry. T7 will be used to
 
                                    trigger the expression of both OprF and SCVE.<br><img
 
                                            src="https://static.igem.org/mediawiki/2015/7/7a/Ustc-T7.jpeg"
 
                                            alt="Figure 3: T7 extraction from parts"></p>
 
                                </li>
 
                                <li><p>Cas9 is got from 2015 Part Distribution.</p>
 
                                </li>
 
                            </ul>
 
                            <p><img src="https://static.igem.org/mediawiki/2015/1/1c/USTC-Cas9.png"
 
                                    alt="Figure 4: Extraction of Cas9 from parts"></p>
 
                            <ul>
 
                                <li>gRNA-AcrB and gRNA-EmrE, these two fragments are for silencing bacterial
 
                                    transmembrane protein AcrB and EmrE to strongly block drug efflux system. These two
 
                                    parts are synthesized by Sangon Biotech Company.
 
                                </li>
 
                            </ul>
 
                            <p><img src="https://static.igem.org/mediawiki/2015/5/54/USTC-gRNA_extraction.png"
 
                                    alt="Figure 5: Extraction of gRNA-AceB and gRNA-EmrE, two fragments are synthesized by Sangon Biotech Company">
 
                            </p>
 
 
                            <h3 id="Construction_of_Permeability_Improving_Plasmid" class="scrollspy">Construction of
 
                                Permeability Improving Plasmid</h3>
 
                            <ul>
 
                                <li>Construction of plasimid with T7-SCVE (<a
 
                                        href="http://parts.igem.org/Part:BBa_K1593667">BBa_K1593667</a>) . We finally
 
                                    ligated the T7 with SCVE and got T7-SCVE (<a
 
                                            href="http://parts.igem.org/Part:BBa_K1593667">BBa_K1593667</a>).
 
                                </li>
 
                            </ul>
 
                            <p><img src="https://static.igem.org/mediawiki/2015/e/ed/Ustc-scve_jp_t7.jpeg"
 
                                    alt="Figure 6: Construction of T7-SCVE ([BBa_K1593667](http://parts.igem.org/Part:BBa_K1593667))">
 
                            </p>
 
                            <ul>
 
                                <li>Construction of plasimid containing T7-OprF (<a
 
                                        href="http://parts.igem.org/Part:BBa_K1593210">BBa_K1593210</a>). This is the
 
                                    result of T7 with OprF.
 
                                </li>
 
                            </ul>
 
                            <p><img src="https://static.igem.org/mediawiki/2015/6/6d/Ustc-t7oprf_lac-chez.jpeg"
 
                                    alt="Figure 7: Construction of T7-OprF ([BBa_K1593210](http://parts.igem.org/Part:BBa_K1593210))">
 
                            </p>
 
 
                            <h3 id="Growth_Characterization" class="scrollspy">Growth Characterization</h3>
 
 
                            <p>We firstly characterized the growth rate of genetically modified CACCI along with wild
 
                                type BL21 using optical density at 600 nm, which is called OD 600, in order to
 
                                demonstrate that the overexpression of porin(OprF with T7,<a href="http://tower.im">BBa_K1593209</a>)
 
                                or viroporin(SCVE with T7, (<a href="http://parts.igem.org/Part:BBa_K1593667">BBa_K1593667</a>)
 
                                won't severely affect the growth of bacteria, at least it won't significantly inhibit
 
                                bacteria growth and become a kill switch.</p>
 
 
                            <p>All bacteria are cultured previously in LB medium about 12 h. And then the measurement of
 
                                bacteria growth through time began at 8 A.M. the other day.</p>
 
 
                            <p><img src="https://static.igem.org/mediawiki/2015/d/d8/Ustc-growth2.png"
 
                                    alt="Figure 8: Bacteria growth characterization"></p>
 
 
                            <p>As the images above illustrated, we found <em>E. coli</em> BL21 wild type has the best
 
                                growth characteristics with a maximal OD600=3.427. Whereas <em>E. coli</em> BL21 with
 
                                OprF (<a href="http://parts.igem.org/Part:BBa_K1593210">BBa_K1593210</a>) has a
 
                                relatively low optical density as its OD600 after 12 h is 2.808 compared to the
 
                                wildtype. In the same way, characterization of <em>E. coli</em> BL21 with SCVE, <a
 
                                        href="http://parts.igem.org/Part:BBa_K1593667">http://parts.igem.org/Part:BBa_K1593667</a>
 
                                showed a slightly smaller OD600, as its finally turned to 2.835. <em>E. coli</em> BL21
 
                                with T7-OprF (<a href="http://parts.igem.org/Part:BBa_K1593210">BBa_K1593210</a>) and
 
                                <em>E. coli</em> BL21 with T7-SCVE, (<a href="http://parts.igem.org/Part:BBa_K1593667">BBa_K1593667</a>)
 
                                are showing 19% decreased maximal cell density and 18.5% decreased maximal cell density
 
                                respectively in comparison with wild type.</p>
 
 
                            <p>Consequently, the result implies that the genetical modification on bacterial
 
                                permeability, at least the overexpression of OprF and SCVE with a strong promoter T7,
 
                                won't significantly influence the bacterial growth. Thus, genetically modified bacteria
 
                                can be used in the following experiments.</p>
 
 
                            <p>Later on, we will characterize the basic permeability capability of <em>E. coli</em> BL21
 
                                with T7-OprF (<a href="http://parts.igem.org/Part:BBa_K1593210">BBa_K1593210</a>) and
 
                                <em>E. coli</em> BL21 with T7-SCVE, (<a href="http://parts.igem.org/Part:BBa_K1593667">BBa_K1593667</a>).
 
                            </p>
 
 
                            <h3 id="ONPG_Assay" class="scrollspy">ONPG Assay</h3>
 
 
                            <p><img src="https://static.igem.org/mediawiki/2015/5/54/ONPG-ustc-sche.png"
 
                                    alt="Figure 9: ONPG reaction"></p>
 
 
                            <p>ONPG, that is the abbreviation of ortho-Nitrophenyl-β-galactoside. ONPG is a colorimetric
 
                                and spectrophotometric substrate, previously used for detecting β-galactosidase
 
                                activity. ONPG is actually colorless at normal situation, however if it triggers the
 
                                degradation reaction catalyzed by β-galactosidase, we will get galactose and
 
                                ortho-nitrophenol. Surprisingly, the compound ortho-nitrophenol has a yellow color,
 
                                which means we are able to detect the chemical reaction through OD detection. Besides,
 
                                owing to the existence of β-galactosidase in bacteria, a more intense optical density we
 
                                detected, that means there are more ONPG uptaked by bacteria. Therefore, using ONPG we
 
                                are able to distinguish the permeability capability of different bacteria.</p>
 
 
                            <p>Here's our result.</p>
 
 
                            <p>Note: The wavelength for detecting the bacterial concentration and absortion of ONPG are
 
                                respectively 600nm and 406nm.</p>
 
 
                            <p>First, we detected the bacterial solutions to control the initial concentrations. </p>
 
 
                            <p><img src="https://static.igem.org/mediawiki/2015/3/32/Ustc-board.png"
 
                                    alt="Figure 10: ONPG assay schematic show"></p>
 
 
                            <p>The OD values for <em>E.coli </em>BL21, <em>E.coli </em>BL21 with T7-OprF (<a
 
                                    href="http://parts.igem.org/Part:BBa_K1593210">BBa_K1593210</a>) , <em>E.coli</em>
 
                                BL21 with T7-SCVE(<a href="http://parts.igem.org/Part:BBa_K1593667">BBa_K1593667</a>)
 
                                are respectively 2.856,1.806 and 1.889. Based on these, we know that the concentrations
 
                                of these three bacteria are close.</p>
 
 
                            <p>Then we add ONPG to the bacterial solutions and detect the OD.</p>
 
 
                            <p><img src="https://static.igem.org/mediawiki/2015/5/52/Ustc-onpg88.png"
 
                                    alt="Figure 11: ONPG assay, absorption OD406"></p>
 
 
                            <p>From this figure, we can see a rising trend in all bacterial solutions. The OD values for
 
                                <em>E.coli</em> BL21 with T7-OprF(<a href="http://parts.igem.org/Part:BBa_K1593210">BBa_K1593210</a>)
 
                                and <em>E.coli </em>BL21 with T7-SCVE(<a href="http://parts.igem.org/Part:BBa_K1593667">BBa_K1593667</a>)
 
                                are respectively 0.2520 and 0.2588,both are higher than <em>E.coli</em> BL21,the wild
 
                                type. We can infer that the absorbtion of modified bacteria is higher than the wild
 
                                type.</p>
 
 
                            <p>There is a more visual figure for comparing the absorbtions. We made a zero calibration
 
                                using the OD value of wild type as the zero level.</p>
 
 
                            <p><img src="https://static.igem.org/mediawiki/2015/0/00/Ustc-onpg55.png"
 
                                    alt="Figure 12: ONPG assay, absorption OD406 in average"></p>
 
 
                            <p>In general, the OD values of both two modified bacteria are rising. For<em> E.coli</em>
 
                                BL21 with T7-OprF(<a href="http://parts.igem.org/Part:BBa_K1593210">BBa_K1593210</a>),
 
                                the rising is relatively smooth. For <em>E.coli</em> BL21 with T7-SCVE(<a
 
                                        href="http://parts.igem.org/Part:BBa_K1593667">BBa_K1593667</a>),the value goes
 
                                down first, then goes up .And the <em>E.coli</em> BL21 with T7-SCVE(<a
 
                                        href="http://parts.igem.org/Part:BBa_K1593667">BBa_K1593667</a>) has a higher
 
                                absorbtion than <em>E.coli </em>BL21 with T7-OprF(<a
 
                                        href="http://parts.igem.org/Part:BBa_K1593210">BBa_K1593210</a>).</p>
 
 
                            <h3 id="NPN_Assay" class="scrollspy">NPN Assay</h3>
 
 
                            <p><img
 
                                    src="https://static.igem.org/mediawiki/2015/1/16/Ustc-npn.gif"
 
                                    alt="Figure 13: Schematic Structure of N-Phenyl-1-naphthylamine, NPN"></p>
 
 
                            <p>N-Phenyl-1-naphthylamine(NPN),C16H13N, CAS:90-30-2, FW: 219.29, is a nonpolar probe,
 
                                whose fluorescence signal is relatively strong in a phospholipid environment, but weak
 
                                in aqueous surroundings. Consequently, using this feature, we are able to characterize
 
                                bacteria permeability by measuring the fluorescence intensity of the bacteria solution.
 
                                When NPN molecules are absorbed by bacteria, we will observe a significantly rising
 
                                fluorescence intensity. The more fluorescence intensity we got, the more permeable the
 
                                bacteria are. Here are what we got from NPN uptake assay and the conclusion on
 
                                genetically engineered bacteria permeability improvement. </p>
 
 
                            <p>Here's our results, the first picture illustrate the total fluorescence intensity
 
                                measurement by <a href="http://www.bmglabtech.com/en/products/clariostar/">BMG Labtech
 
                                    CLARIOstar®</a>.</p>
 
 
                            <p><em>Note</em>: The fluorescence intensity signal at excitation wavelength range is 305nm
 
                                to 335nm and emission wavelength range is 370nm to 410nm, which is recommended by
 
                                previous research. </p>
 
 
                            <p><img src="https://static.igem.org/mediawiki/2015/e/e5/Ustc-npn1.png"
 
                                    alt="Figure 14: NPN uptake result-1"></p>
 
 
                            <p>The total fluorescence intensity of <em>E. coli</em> BL21 wild type is 126451. On the
 
                                other hand, the fluorescence intensity in <em>E. coli</em> BL21 with T7-OprF (<a
 
                                        href="http://parts.igem.org/Part:BBa_K1593210">BBa_K1593210</a>) and <em>E.
 
                                    coli</em> BL21 with T7-SCVE, (<a href="http://parts.igem.org/Part:BBa_K1593667">BBa_K1593667</a>)
 
                                are respectively 207322 and 151820, which are significantly larger than the wildtype
 
                                assay.</p>
 
 
                            <p>Though we have already got the exact data on NPN uptake, we still need to revise its
 
                                effectiveness because of the different bacteria concentration of <em>E. coli</em> BL21
 
                                wild type, <em>E. coli</em> BL21 with T7-OprF (<a
 
                                        href="http://parts.igem.org/Part:BBa_K1593210">BBa_K1593210</a>) and <em>E.
 
                                    coli</em> BL21 with T7-SCVE, (<a href="http://parts.igem.org/Part:BBa_K1593667">BBa_K1593667</a>).
 
                                Here is the exact bacteria concentration data, based on OD600nm,</p>
 
                            <table class="striped">
 
                                <thead>
 
                                <tr>
 
                                    <th>Strain</th>
 
                                    <th>OD600nm</th>
 
                                </tr>
 
                                </thead>
 
                                <tbody>
 
                                <tr>
 
                                    <td><em>E. coli</em> BL21 wild type</td>
 
                                    <td>3.663</td>
 
                                </tr>
 
                                <tr>
 
                                    <td><em>E. coli</em> BL21 with T7-OprF (<a
 
                                            href="http://parts.igem.org/Part:BBa_K1593210">BBa_K1593210</a>)
 
                                    </td>
 
                                    <td>2.431</td>
 
                                </tr>
 
                                <tr>
 
                                    <td><em>E. coli</em> BL21 with T7-SCVE, (<a
 
                                            href="http://parts.igem.org/Part:BBa_K1593667">BBa_K1593667</a>)
 
                                    </td>
 
                                    <td>2.441</td>
 
                                </tr>
 
                                </tbody>
 
                            </table>
 
                            <p>After correcting these data, we are able to get bacteria absorption uptake capability in
 
                                average, which is a more accurate value to characterize bacterial permeability
 
                                property.</p>
 
 
                            <p><img src="https://static.igem.org/mediawiki/2015/1/1a/Ustc-npn2.png"
 
                                    alt="Figure 15: NPN uptake result in average "></p>
 
 
                            <p>The fluorescence intensity in average of <em>E. coli</em> BL21 wild type is 34521.16. On
 
                                the contrary, the fluorescence intensity revised by bacterial concentration in <em>E.
 
                                    coli</em> BL21 with T7-OprF (<a href="http://parts.igem.org/Part:BBa_K1593210">BBa_K1593210</a>)
 
                                and <em>E. coli</em> BL21 with T7-SCVE, (<a
 
                                        href="http://parts.igem.org/Part:BBa_K1593667">BBa_K1593667</a>) are
 
                                respectively 85282.60 and 62195.8, which are relatively 2.5 folds and approximately 2
 
                                folds to <em>E. coli</em> wild type, that is a significantly improvement compared to
 
                                wild type.</p>
 
 
                            <p>Consequently, through NPN uptake assay, we are able to conclude that the small molecule
 
                                uptake capability of bacteria improved after our genetical modification. Thus <em>E.
 
                                    coli</em> BL21 with T7-OprF (<a href="http://parts.igem.org/Part:BBa_K1593210">BBa_K1593210</a>)
 
                                and <em>E. coli</em> BL21 with T7-SCVE, (<a
 
                                        href="http://parts.igem.org/Part:BBa_K1593667">BBa_K1593667</a>) are both able
 
                                to use as the candidate bacteria strains for NDM measurement.</p>
 
 
                            <h3 id="bibliography" class="scrollspy">Bibliography</h3>
 
                            <ol>
 
                                <li><p><em>T. Mattila-Sandholm et al.</em> Fluorometric assessment of Gram-negative
 
                                    bacterial permeabilization. <strong>Journal of Applied Microbiology</strong> 2000,
 
                                    88, 213–219</p>
 
                                </li>
 
                                <li><p><em>Scott Banta et al.</em> Genetic Manipulation of Outer Membrane Permeability:
 
                                    Generating Porous Heterogeneous Catalyst Analogs in <em>Escherichia coli</em>
 
                                    dx.doi.org/10.1021/sb400202s <strong>ACS Synth. Biol.</strong> 2014, 3, 848−854</p>
 
                                </li>
 
                            </ol>
 
 
                        </div>
 
                    </div>
 
                    <div class="col hide-on-small-only m3">
 
                        <div class="toc-wrapper pinned">
 
                            <ul class="section table-of-contents">
 
                                <li>
 
                                    <a href="#Extraction_of_Permeability_Improvement_Fragements">Extraction of
 
                                        Permeability Improvement Fragement</a>
 
                                </li>
 
                                <div class="divider"></div>
 
                                <li>
 
                                    <a href="#Construction_of_Permeability_Improving_Plasmid">Construction of
 
                                        Permeability Improving Plasmid</a>
 
                                </li>
 
                                <div class="divider"></div>
 
                                <li>
 
                                    <a href="#Growth_Characterization">Growth Characterization</a>
 
                                </li>
 
                                <div class="divider"></div>
 
                                <li>
 
                                    <a href="#ONPG_Assay">ONPG Assay</a>
 
 
                                    <div class="divider"></div>
 
                                <li>
 
                                    <a href="#NPN_Assay">NPN Assa</a>
 
  
                                    <div class="divider"></div>
+
            <div class="row center" style="margin-top:20px;">
                                <li>
+
            <a href="https://static.igem.org/mediawiki/2015/b/bd/USTCUSTC_Manual.pdf" id="download-button" class="btn-large waves-effect waves-light blue">Get it now!</a>
                                    <a href="#bibliography">Bibliography</a>
+
          </div>
                                </li>
+
             
                            </ul>
+
          </div>
                        </div>
+
                    </div>
+
                </div>
+
            </div>
+
 
         </div>
 
         </div>
  
        <div id="Chemotaxis_Modification_and_ROSE" class="row">
+
      </div>
            <div class="card hoverable">
+
    </div>
                <div class="row">
+
                    <div class="col s12 m9">
+
                        <div class="card-content">
+
                            <h3 id="Genetic_Fragments_Extraction" class="scrollspy">Genetic Fragments Extraction</h3>
+
                            <ul>
+
                                <li>micF and SoxS, these two antibiotic substance responding promoters were extracted
+
                                    from E. coli Top 10(K-12 strain) by conducting polymerase chain reaction on its
+
                                    genome.
+
                                </li>
+
                            </ul>
+
                            <p><img src="https://static.igem.org/mediawiki/2015/7/7e/Ustc-micf_soxs_xh.jpeg"
+
                                    alt="Figure 1: fragements extraction of micF and SoxS"></p>
+
                            <ul>
+
                                <li>cheZ, this is the chemotaxis modified fragment.</li>
+
                            </ul>
+
                            <p><img src="https://static.igem.org/mediawiki/2015/8/8c/Ustc-chez.jpeg"
+
                                    alt="Figure 2: fragements extraction of cheZ"></p>
+
                            <ul>
+
                                <li>BBa_R0010, this is promoter of lac, which triggers the expression of cheZ.</li>
+
                            </ul>
+
                            <p><img src="https://static.igem.org/mediawiki/2015/3/34/Ustc-oprf_ep_r0010.jpeg"
+
                                    alt="[Figure 3: fragment extraction of OprF and Lac](http://parts.igem.org/Part:BBa_K1593997)">
+
                            </p>
+
  
                            <p><strong>Construction of plasimid with lac-cheZ <a
+
    <div id="Make-Your-Own" class="row">
                                    href="http://parts.igem.org/Part:BBa_K1593997">BBa_K1593997</a></strong></p>
+
      <div class="card hoverable">
 +
        <div class="col s12 m9">
 +
          <div class="card-content">
 +
          <h4 id="Materials" class="scrollspy">Materials</h4>
 +
          <p>To accomplish SPRING, you need prepare those material showed below:</p>
 +
          <table>
 +
            <thead>
 +
              <tr>
 +
                <th>Materials</th>
 +
                <th>Number</th>
 +
                <th>Price in estimation($)</th>
 +
              </tr>
 +
            </thead>
 +
            <tbody>
 +
              <tr>
 +
                <td>12 in 1 display</td>
 +
                <td>1</td>
 +
                <td>92.08</td>
 +
              </tr>
 +
              <tr>
 +
                <td>CSI Interface Camera</td>
 +
                <td>1</td>
 +
                <td>13.88</td>
 +
              </tr>
 +
              <tr>
 +
                <td>Camera Bracket</td>
 +
                <td>1</td>
 +
                <td>1.42</td>
 +
              </tr>
 +
              <tr>
 +
                <td>3V laser head</td>
 +
                <td>2</td>
 +
                <td>0.31</td>
 +
              </tr>
 +
              <tr>
 +
                <td>5V laser head module</td>
 +
                <td>2</td>
 +
                <td>1.73</td>
 +
              </tr>
 +
              <tr>
 +
                <td>Arduino UNO R3</td>
 +
                <td>1</td>
 +
                <td>4.67</td>
 +
              </tr>
 +
              <tr>
 +
                <td>Universal circuit board</td>
 +
                <td>5</td>
 +
                <td>0.41</td>
 +
              </tr>
 +
              <tr>
 +
                <td>Breadboard</td>
 +
                <td>2</td>
 +
                <td>1.75</td>
 +
              </tr>
 +
              <tr>
 +
                <td>Dupont line</td>
 +
                <td>15</td>
 +
                <td>4.25</td>
 +
              </tr>
 +
              <tr>
 +
                <td>12V lithium battery</td>
 +
                <td>1</td>
 +
                <td>15.72</td>
 +
              </tr>
 +
              <tr>
 +
                <td>12.6V 3A Chargers</td>
 +
                <td>1</td>
 +
                <td>6.06</td>
 +
              </tr>
 +
              <tr>
 +
                <td>DC-DC step-down module</td>
 +
                <td>2</td>
 +
                <td>5.04</td>
 +
              </tr>
 +
              <tr>
 +
                <td>PP board</td>
 +
                <td>1</td>
 +
                <td>7.71</td>
 +
              </tr>
 +
              <tr>
 +
                <td>Miniature hand drill</td>
 +
                <td>1</td>
 +
                <td>20.46</td>
 +
              </tr>
 +
            </tbody>
 +
          </table>
 +
          <div class="divider"></div>
 +
          <h4 id="Protection-Guide" class="scrollspy">Protection Guide</h4>
 +
          <p><img src="https://static.igem.org/mediawiki/2015/c/ca/Ustc-myo15.png"></p>
 +
          <p>When you are making NDM, many tools are needed, as well as touching bacteria solution. Consequently, we provided four recommended protective measures for everyone. Please pay attention to personal safety when doing experiment:</p>
 +
          <p><img src="https://static.igem.org/mediawiki/2015/e/eb/Ustc-myo11.png"></p>
 +
          <ul>
 +
            <li>Level A: Fundamental protective measure when producing NDM and conducting experiment. You may wear lab coat. When conducting experiments and assemble NDM, level A should be satisfied always.</li>
 +
          </ul>
 +
          <p><img src="https://static.igem.org/mediawiki/2015/1/11/Ustc-myo12.png"></p>
 +
          <ul>
 +
            <li>Level B: In level B, personnel should not only wear lab coat, but wear nitrile gloves or latex gloves, which are necessary when touching bacteria solution. This procedure is the first step for detection.</li>
 +
          </ul>
 +
          <p><img src="https://static.igem.org/mediawiki/2015/5/54/Ustc-myo13.png"></p>
 +
          <ul>
 +
            <li>Level C: Level C is the standard protocol for personnels when drilling. In addtion to level A, you should wear goggles. Goggles would protect your eyes when you are drilling plexiglass. And please do remember ROLL UP YOUR SLEEVES to prevent possible hurts and DO NOT WEAR GLOVES because it is not convenient when drilling.</li>
 +
          </ul>
 +
          <p><img src="https://static.igem.org/mediawiki/2015/9/91/Ustc-myo14.png"></p>
 +
          <ul>
 +
            <li>Level D: This is the most complicated protective measure for spraing painting procedure. One should wear lab coats, along with goggles, masks and gloves to toally protect oneself considering extreme pungent odor volatilizing when painting.</li>
 +
          </ul>
 +
          <div class="divider"></div>
 +
          <h4 id="Tools" class="scrollspy">Tools</h4>
 +
          <p><img src="https://static.igem.org/mediawiki/2015/0/01/Ustc-myo1.png"></p>
 +
          <ul>
 +
            <li>Drill is used for cutting acrylic materials for assemble bracket.</li>
 +
            <li>Electric soldering iron, for welding electric circuit.</li>
 +
            <li>Glue gun is needed for adhesion between each other acrylic materials.</li>
 +
          </ul>
 +
          <div class="divider"></div>
 +
          <h4 id="Display-module" class="scrollspy">Display module</h4>
 +
          <p><img src="https://static.igem.org/mediawiki/2015/5/52/Ustc-myo2.png"></p>
 +
          <p>The display module contains 12 in 1 display with processor and buttons. Users are able to control the power, contrast and other display effects through buttons beside the display.</p>
 +
          <div class="divider"></div>
 +
          <h4 id="Raspberry-Pi" class="scrollspy">Raspberry Pi</h4>
 +
          <p><img src="https://static.igem.org/mediawiki/2015/6/6a/Ustc-myo3.png"></p>
 +
          <p>Raspberry Pi, is the main hardware module that can take photos or videos of interference fringes, then our software analyses them or transmits to your PC. we can see the results on the screen.</p>
 +
          <div class="divider"></div>
 +
          <h4 id="Circuit-Elements" class="scrollspy">Circuit Elements</h4>
 +
          <p><img src="https://static.igem.org/mediawiki/2015/e/e0/Ustc-myo4.png"></p>
 +
          <ul>
 +
            <li>Transformer: The responsibility of transformer is to drop voltage 12V produced by lithium battery to 5V, which is needed to supply cooling fan on Raspberry Pi and laser beam.</li>
 +
            <li>Breadboard: Many solderlessly electronic circuits tests will be conducted on breadboard.</li>
 +
            <li>Lithium-polymer battery: Provide power, 12V, 10000mA·h.</li>
 +
          </ul>
 +
          <div class="divider"></div>
 +
          <h4 id="Optical-Path-Elements" class="scrollspy">Optical Path Elements</h4>
 +
          <p>The schematic figure of optical path is based on Michelson interferometer, to get more principle of optical path in SPRING, please refer to: <a href="http://tower.im">Project-SPRING</a>
 +
            <br><img src="https://static.igem.org/mediawiki/2015/7/73/Ustc-myo10.png"></p>
 +
          <p>Here we will introduce elements that are indispensable for interference patterns formation.
 +
            <br><img src="https://static.igem.org/mediawiki/2015/d/dc/Ustc-myo5.png"></p>
 +
          <ul>
 +
            <li>Webcam, containing CCD(charge-coupled device) image sensor, is able to capture picture, mainly for interference pattern capture.</li>
 +
            <li>Laser, wavelength: 650nm, 5V power supply</li>
 +
            <li>Expander is to expand the diameter of the laser beam. Two reasons are required to expand beam diameter. On the one hand, a larger diameter of the laser beam could avoid laser focusing on detecting film, preventing the possibility of film burned. On the other hand, laser beam would cover the film for better detection.
 +
              <br><img src="https://static.igem.org/mediawiki/2015/9/95/Ustc-myo6.png"></li>
 +
            <li><strong>Beamsplitter combination</strong>, consists of three mirrors, a <strong>50% reflection - 50% transmission beamsplitter(50%(R)/50%(T) in brief)</strong>, a <strong>80% reflection - 20% transmission beamsplitter(80%(R)/20%(T) in brief)</strong> and a <strong>10% reflection- 90% transmission beamsplitter(10%(R)/90%(T) in brief)</strong>. 1)50%(R)/50%(T) is in the front of picture. The reflection light will project to detecting film , while the transmission beamsplitter will continue going to reflection mirror. 2) Then why do we need The 80%(R)/20%(T), along with 10%(R)/90%(T)? Actually these combination is really important to decrease the relatively high intensity reflected from reflector. Much higher intensity from reflector will not fit the formation condition of interference pattern. 80%(R)/20%(T)+10%(R)/90%(T), approximately allowing 18% light approach reflector, are combined together on the bottom of the picture. </li>
 +
            <li>Reflector, a necessary element for interference pattern formation.</li>
 +
            <li>Sample trough with film, interacting with reflector to form interference ring.</li>
 +
          </ul>
 +
          <div class="divider"></div>
 +
         
 +
          <h4 id="Sample-Trough" class="scrollspy">Sample Trough</h4>
 +
          <p>Our sample trough or sample box is designed based on the most proper size.</p>
 +
          <p>In the middle lies the empty part, which can be covered by film. </p>
 +
          <p><img src="https://static.igem.org/mediawiki/2015/6/6e/Ustc-myo7.png" alt="Figure13: Clips"></p>
 +
          <p>These are our clips, there are two kinds of clips respecitvely used for different shape of film.</p>
 +
          <p><img src="https://static.igem.org/mediawiki/2015/3/3d/Ustc-myo8.png" alt="Figure14: CAD drawing of clips"></p>
 +
          <figure>
 +
            <img src="https://static.igem.org/mediawiki/2015/7/79/Ustc-myo9.png">
 +
            <figcaption>
 +
            Figure15: The bases of optical parts
 +
            </figcaption>
 +
          </figure>
 +
          <p>And in order to adjust optical device on the same plain, you may need a plexiglass base to produce. You can produce your own base followed the drawing above.</p>
 +
          <div class="divider"></div>
 +
         
 +
          <h4 id="Film-Preparation" class="scrollspy">Film Preparation</h4>
 +
          <p>To see more about our ways to find final film through candidate, please refer to <a href="http://tower.im">Modeling-Film Candidate</a>. </p>
 +
            <p>Our film will be prepared in several processes illustrated below:</p>
 +
            <p><em>Coating film with polylysine</em></p>
 +
            <p>Add approximiately 400 ul 20ug/mL polylysine on the film, and store the film at 4 degree celcius for more than 4 hours. After 4 hours, absorb polylysine and then wash the film by PBS buffer. Note: polylysine can be recycled.</p>
 +
            <p><em>Adhesion Assay</em></p>
 +
            <p>Add 200 ul bacteria solution on film about 100s. Note: bacteria grown should be in steady state, and you should dilate bacteria and let its OD(600) approximiately reach 0.05</p>
 +
            <p><em>Operate Optical Path</em></p>
 +
            <p>Operating optical path within 100s would be highly recommended for users. To get the best images, you should observe and get fringes parallel to y axis of screen as possible.</p>
 +
            <p><em>Observe and Record</em></p>
 +
            <p>The measurement period is about 300s. Consequently, we recommend users to take a series of images each 10s during the beginning of 300s. </p>
 +
          <div class="divider"></div>
  
                            <p>This is our final construction of lac-cheZ <a
+
          <h4 id="build-your-electric-circuit" class="scrollspy">Build your electric circuit</h4>
                                    href="http://parts.igem.org/Part:BBa_K1593997">BBa_K1593997</a></p>
+
          <p><img src="https://static.igem.org/mediawiki/2015/d/d9/DIANLU.jpg" alt="Figure16: Electric circuit"></p>
 
+
            <h5>Prepare RaspberryPi</h5>
                            <p><img src="https://static.igem.org/mediawiki/2015/6/6d/Ustc-t7oprf_lac-chez.jpeg"
+
            <p>The Raspberry Pi is a low cost, credit-card sized computer that plugs into a computer monitor or TV, and uses a standard keyboard and mouse. It is a capable little device that enables people of all ages to explore computing, and to learn how to program in languages like Scratch and Python. It’s capable of doing everything you’d expect a desktop computer to do, from browsing the internet and playing high-definition video, to making spreadsheets, word-processing, and playing games.(<a href="http://tower.im">https://www.raspberrypi.org/help/what-is-a-raspberry-pi/</a>)</p>
                                    alt="Figure 4: plasmid construction of lac-cheZ [BBa_K1593997](http://parts.igem.org/Part:BBa_K1593997) ">
+
            <p>The module we used is Raspberry-PI 2B, and you can buy from <a href="www.raspberrypi.org">www.raspberrypi.org</a></p>
                            </p>
+
            <div class="divider"></div>
 
+
            <h5>First, write the system into a TF card and then put it on your Pi</h5>
                            <h3 id="Growth_characteristics" class="scrollspy">Growth characteristics</h3>
+
            <p>The system RASPBIAN is recommended. Attention: TF card and SD card are different. TF card also called Micro SD card. You can download the updated system from <a href="www.raspberrypi.org">www.raspberrypi.org</a> </p>
                            <p>We detected OD600(nm) to identify the effect
+
            <p>Then, begin to write. You should prepare a TF card, preferably a high-speed card is recommended above Class4 because the card was a direct impact on the running speed of Raspberry-Pi. </p>
                                of cheZ (<a href="http://parts.igem.org/Part:BBa_K1593997">BBa_K1593997</a>) expressed
+
            <p>Get an Installation Tools win32diskimager (under win7), download at <a href="http: //www.onlinedown.net/soft/110173.htm">this site</a></p>
                                on <em>E. coli</em> BL21 with time induced by IPTG or not.</p>
+
            <p>Connect the TF card to your PC. Unzip the downloaded zip file debian system to give image file.</p>
 
+
            <p>Extract and run win32diskimager Tools.</p>
                            <p><img src="https://static.igem.org/mediawiki/2015/d/d6/Ustc-growth.png"
+
            <p><img src="https://static.igem.org/mediawiki/2015/e/e9/Make_your_own_1-1.jpg" alt=""></p>
                                    alt="Figure 5: Growth characteristics of BL21 WT with lac-cheZ [BBa_K1593997](http://parts.igem.org/Part:BBa_K1593997) induced by IPTG or not">
+
              <p>Select debian img file, and select the SD drive letter under "Device", then click "Write".</p>
                            </p>
+
              <p><img src="https://static.igem.org/mediawiki/2015/4/42/Make3.jpg" alt=""></p>
 
+
              <p>Then, you’ll see “Write successful”.</p>
                            <p>As the images above illustrated, we found <em>E. coli</em> BL21 wild type has the best
+
              <p><img src="https://static.igem.org/mediawiki/2015/7/74/Make4.jpg" alt=""></p>
                                growth characteristics with a maximal OD600=2.6. Whereas <em>E. coli</em> BL21 with cheZ
+
            <div class="divider"></div>
                                (<a href="http://parts.igem.org/Part:BBa_K1593997">BBa_K1593997</a>) induced by ITPG has
+
            <h5>Connect and Power on your RaspberryPi</h5>
                                a relatively low optical density as its OD600 after 9 h is 2.3 compared to the wildtype.
+
            <p>You should power your pi with 5 volts using a micro-usb line. Remember to connect your keyboard and mouse to pi first, because you can’t make anything without them.</p>
                                In the same way, characterization of <em>E. coli</em> BL21 with cheZ (<a
+
            <p>Attention: don’t forget to power on the mini fan on the Raspberry-Pi due to too much heat generated.</p>
                                        href="http://parts.igem.org/Part:BBa_K1593997">BBa_K1593997</a>) not induced by
+
              <p><img src="https://static.igem.org/mediawiki/2015/a/aa/Make5.jpg" alt=""></p>
                                IPTG showed a slightly smaller OD600, as its finally turned to 2.1. The exogenous
+
              <p>Then connect the display device. </p>
                                protein expression affects the growth of bacteria, which was indicated by slight slower
+
            <p><img src="https://static.igem.org/mediawiki/2015/5/52/Ustc-myo2.png" alt="Figure16: The display module"></p>
                                grow-up in <em>E. coli</em> containing cheZ plasmid. In total, cheZ doesn't have obvious
+
            <p>And we need to connect the camera.</p>
                                negative impact on bacteria grown. </p>
+
            <p><img src="https://static.igem.org/mediawiki/2015/f/f9/Make6.jpg" alt="Figure17: Webcam"></p>
 
+
            <p>Finally, get started!</p>
                            <h3 id="SDS-PAGE" class="scrollspy">SDS-PAGE</h3>
+
            <p><img src="https://static.igem.org/mediawiki/2015/e/e0/Make7.jpg" alt="Figure18: Raspberry Pi"></p>
                            <p>After induced by IPTG in 1mM about 4 h, cheZ was found in
+
            <div class="divider"></div>
                                SDS-PAGE gel, compared to the wild type (Top10) and bacteria without IPTG induction.
+
            <h5>Get started</h5>
                                Through this result, we concluded that cheZ has been successfully expressed with the
+
            <p>First, you should update your RaspberryPi. Just click the image of monitor. And then enter “sudo apt-get update”.</p>
                                IPTG induction.<br><img
+
            <p><img src="https://static.igem.org/mediawiki/2015/5/55/Make9.jpg" alt="Figure19: Sudo apt-get update"></p>
                                        src="https://static.igem.org/mediawiki/2015/7/72/Ustc-chez_expression.png"
+
            <p>Then enter “sudo apt-get install luvcview”</p>
                                        alt="Figure 6: characterization of cheZ expression by SDS-PAGE"><br>See protocol
+
            <p><img src="https://static.igem.org/mediawiki/2015/5/55/Make9.jpg" alt="Figure20: Sudo apt-get install luvcview"></p>
                                in <a href="http://tower.im">Protocols: SDS-PAGE</a></p>
+
              <p>After installing the software, restart your RaspberryPi and enjoy your journey with SPRING now!</p>
 
+
            <div class="divider"></div>
                        </div>
+
            <h5>How to use Raspberry Pi?</h5>
                    </div>
+
            <p>I. Power on the screen,and then the raspberrypi.Power on the mini fan.</p>
                    <div class="col hide-on-small-only m3">
+
            <p>Click this one:</p>
                        <div class="toc-wrapper pinned">
+
            <p><img src="https://static.igem.org/mediawiki/2015/0/0b/Ustc-perry1.png" alt="Clipboard Image.png"></p>
                            <ul class="section table-of-contents">
+
            <p>II. Enter “luvcview” andthen press ”enter”</p>
                                <li>
+
            <p><img src="https://static.igem.org/mediawiki/2015/9/9b/Ustc-perry2.png" alt="Clipboard Image.png"></p>
                                    <a href="#Genetic_Fragments_Extraction">Genetic Fragments Extraction</a>
+
            <p>III. After enter “luvcview”,Move the table to see the “take a picture!!” Then, click this one. You canclick it for many times.</p>
                                </li>
+
            <p><img src="https://static.igem.org/mediawiki/2015/c/c7/Ustc-perry3.png" alt="Clipboard Image.png"></p>
                                <div class="divider"></div>
+
            <p>IV. After get pictures, youcan transfer the files to your computer via WLAN adapter.</p>
                                <li>
+
            <p>First, you should restart the “networking”.</p>
                                    <a href="#Growth_characteristics">Growth characteristics</a>
+
            <p>Enter “sudo /etc/init.d/networking restart”</p>
                                </li>
+
            <p>You will see this.</p>
                                <div class="divider"></div>
+
            <p>You should memory the “bound to XXX.XXX.XX.X” in your mind.</p>
                                <li>
+
            <p><img src="https://static.igem.org/mediawiki/2015/8/80/Ustc-perry4.png" alt="Clipboard Image.png"></p>
                                    <a href="#SDS-PAGE">SDS-PAGE</a>
+
            <p>V. Then ,you shouldinstall the software “FileZilla”.</p>
                                </li>
+
            <p>Open it ,and enter ”sftp://XXX.XXX.XX.X”</p>
                            </ul>
+
            <p>User name is “pi”</p>
                        </div>
+
            <p>Password is “raspberry”</p>
                    </div>
+
            <p>Normally , the pictures are in /home/pi .</p>
                </div>
+
            <p>Just drag the file to you computer.</p>
            </div>
+
            <p><img src="https://static.igem.org/mediawiki/2015/f/f7/Ustc-perry5.png" alt="Clipboard Image.png"></p>
 +
            <div class="divider"></div>
 +
            <h5>Build your BOX</h5>
 +
            <p>As is showed in the following picture, there is a clapboard inside the box, above the electric circuit part.</p>
 +
            <p><img src="https://static.igem.org/mediawiki/2015/b/ba/Make13.jpg" alt="Figure21: Build the box"></p>
 +
              <p>Oh, remember all parts should be fixed with hot-melt adhesive (hot glue), in order to maintain stability.</p>
 +
              <p>This is hot glue gun. The gun uses a continuous-duty heating element to melt the plastic glue, which may be pushed through the gun by a mechanical trigger mechanism, or directly by the user. The glue squeezed out of the heated nozzle is initially hot enough to burn and even blister skin. The glue is tacky when hot, and solidifies in a few seconds to one minute. Hot melt adhesives can also be applied by dipping or spraying.</p>
 +
            <p><img src="https://static.igem.org/mediawiki/2015/3/32/Make18.jpg" alt="Figure22: Hot glue gun"></p>
 +
              <p>Now, let’s see how to build it.</p>
 +
              <p>First, bond surfaces of your part and the workbench together. Look at the following picture, pay attention to the white thing. Yes, that’s it.</p>
 +
            <p><img src="https://static.igem.org/mediawiki/2015/5/5c/Make17.jpg" alt="Figure23: Laser &amp; Expander"></p>
 +
            <p>Then, stick the optical part with the workbench. Look at the following picture carefully.</p>
 +
            <p><img src="https://static.igem.org/mediawiki/2015/1/10/Make12.jpg" alt="Figure24: Optical path"></p>
 +
            <p>And in order to make it easy to adjust the position of the film, we invent a little sliding rail.</p>
 +
            <p><img src="https://static.igem.org/mediawiki/2015/a/a5/Make11.jpg" alt="Figure25: Sliding rail"></p>
 +
            <p>As for the clapboard inside the box, we invent a removable device. Actually, it’s just a pair of supporting plates. Notice the left of the following picture.</p>
 +
            <p><img src="https://static.igem.org/mediawiki/2015/c/cf/Make16.jpg" alt="Figure26: Supporting plates"></p>
 +
            <p>In this way, we can put the electric circuit part on the supporting plates directly.</p>
 +
            <p><img src="https://static.igem.org/mediawiki/2015/b/ba/Make13.jpg" alt="Figure27: The inside structure"></p>
 +
            <p>What's our tool when cutting acrylic?</p>
 +
            <p><img src="https://static.igem.org/mediawiki/2015/1/19/Make10.jpg" alt="Figure28: Cutting acrylic"></p>
 +
          </div>
 
         </div>
 
         </div>
 
+
         <div class="col hide-on-small-only m3">
 
+
          <div class="toc-wrapper pinned">
         <div id="Adhesion_Assay" class="row">
+
            <ul class="section table-of-contents">
            <div class="card hoverable">
+
              <li>
                <div class="col s12 m9">
+
                <a href="#Materials">Materials</a>
                    <div class="card-content">
+
              </li>
                        <h3 id="characterization-of-optimal-conditions-on-polylysine-pll-coated-assay"
+
              <li>
                            class="scrollspy">
+
                <a href="#Protection-Guide">Protection Guide</a>
                            Characterization of Optimal Conditions on Polylysine(PLL) Coated Assay</h3>
+
              </li>
 
+
              <li>
                        <p>To see the details on the mechanism of polylysine adhesion, please refer to <a
+
                <a href="#Tools">Tools</a>
                                href="http://tower.im">Adhesion: Polylysine</a>.</p>
+
              </li>
 
+
              <li>
                        <p>To get the final PLL-coated protocol, check <a href="http://tower.im">Protocols: PLL
+
                <a href="#Display-module">Display module</a>
                            Coated Assay</a> for further information.</p>
+
              </li>
 
+
              <li>
                        <p>Our original characterization of optimal conditions on polylysine(PLL)-coated assay
+
                 <a href="#Raspberry-Pi">Raspberry Pi</a>
                            requires several factors to get, including:</p>
+
              </li>
                        <ol>
+
              <li>
                            <li>Best bacterial developmental interval along with recommended dilution conditions.
+
                <a href="#Circuit-Elements">Circuit Elements</a>
                            </li>
+
              </li>
                            <li>Best PLL-Coated Concentration and Pre-treatment Time.</li>
+
              <li>
                            <li>Best PLL-Coated Time, given full consideration to the completion of bacterial
+
                <a href="#Optical-Path-Elements">Optical Path Elements</a>
                                adhesion time.
+
              </li>
                            </li>
+
              <li>
                            <li>Best Measurement Interval, which illustrates the possible time for bacterial
+
                <a href="#Sample-Trough">Sample Trough</a>
                                response on antibiotics pressure.
+
              </li>
                            </li>
+
              <li>
                            <li>Possible Determination Interval, which refers to antibiotics response interval.</li>
+
                <a href="#Film-Preparation">Film Preparation</a>
                        </ol>
+
              </li>
                        <p>Here we present all the optimistic conditions for users to get the effective results on
+
              <li>
                            antibiotics using our CACCI and SPRING.</p>
+
                <a href="#build-your-electric-circuit">Build your electric circuit</a>
 
+
              </li>
                        <h3 id="Best_Bacterial_Developmental_Interval_Along_with_Recommended_Dilution_Conditions"
+
            </ul>
                            class="scrollspy">Best Bacterial Developmental Interval Along with Recommended Dilution
+
          </div>
                            Conditions</h3>
+
 
+
                        <p>According to experience on <em>E. coli</em> development based on OD detector. We
+
                            concluded that bacteria exploding during <strong>Logarithmic Period(OD:535nm about
+
                                0.4~0.5)</strong> are at the most energetic moments with proper bacterial density.
+
                            Consequently, we highly recommend user to culture bacteria at Logarithmic Period and
+
                            then <strong>dilute bacterial solution about twenty times to fifty times.</strong></p>
+
 
+
                        <h3 id="Best_PLL-Coated_Concentration_and_Pre-treatment_Time" class="scrollspy">Best PLL-Coated
+
                            Concentration and Pre-treatment Time.</h3>
+
 
+
                        <p>Best PLL-Coated Conditions, which include PLL-Pretreatment time, PLL-Coated concentration
+
                            and PLL-Coated time are measured for best adhesive condictions for bacterial
+
                            treatment.</p>
+
 
+
                        <p>As for PLL-Pretreatment time, we adopt traditional pretreatment time, incubating about
+
                            12~16 h, for recommendation, which is originally used for neurons coated on neural
+
                            science research. And when it comes to PLL-coated concentration, experience on neurons
+
                            adhesion is also precious. According to previous research, PLL concentration in the
+
                            interval of 20 ug/mL to 100 ug/mL is quite effective for bacterial adhesion.</p>
+
 
+
                        <h3 id="Adhesion_Assay_with_PLL_treatment" class="scrollspy">Adhesion Assay with PLL
+
                            treatment</h3>
+
 
+
                        <p>Here we deliver the PLL treatment
+
                            results comparing with no PLL treatment assay. During pre-experiment adhesion assay,
+
                            PAO1, a strain of <em>Pseudomonas aeruginosa</em>, is used for adhesion effects. </p>
+
 
+
                        <p>The picture below showed the amount of bacteria(PAO1) under microscope without PLL
+
                            treatment, which is abbreviated as PLL(-). To observe capability of bacterial adhesion,
+
                            we wash observed place with PBS:</p>
+
 
+
                        <p><img src="https://static.igem.org/mediawiki/2015/c/c3/Control_-1.png"
+
                                alt="Figure 1: Control Assay-Without PLL treatment"></p>
+
 
+
                        <p>After elution, a significant decline in the number of bacteria is recorded. As a matter
+
                            of fact, there is no bacteria in observed field after PBS washing. </p>
+
 
+
                        <p><em>To get the algorithm of bacterial counting, please refer to <a
+
                                href="http://tower.im">Modeling: Bacterial number and movement analysis</a></em>.
+
                        </p>
+
 
+
                        <p><img src="https://static.igem.org/mediawiki/2015/e/e9/PAO1-PLL--.png"
+
                                alt="Figure 2: Control Assay-Without PLL treatment2"></p>
+
 
+
                        <p>As for treatment with PLL in 20 ug/mL, which is abbreviated as PLL(+,20), the impressive
+
                            adhesion effect is observed. To ensure the exact effect, bacteria observing field is
+
                            washed twice by PBS.</p>
+
 
+
                        <p><img src="https://static.igem.org/mediawiki/2015/9/96/Adhesion_Assay.png"
+
                                alt="Figure 3: Adhesion Assay-With PLL treatment in 20 ug/mL"></p>
+
 
+
                        <p>The number of bacteria doesn't decline, and on the contrary, we see slight increase of
+
                            bacteria number. The possible reason is constant bacterial settlement during adhesion
+
                            assay. After twice PBS wash, the number of bacteria is relatively stable as well.
+
                            Consequently, we concluded PLL has significant adhesive ability on bacteria.</p>
+
 
+
                        <p><img src="https://static.igem.org/mediawiki/2015/9/9e/PAO-Withoug.png"
+
                                alt="Figure 4: Adhesion Assay-With PLL treatment in 20 ug/mL"></p>
+
 
+
                        <h3 id="Best_PLL-Coated_Time" class="scrollspy">Best PLL-Coated Time</h3>
+
 
+
                        <p>Then, we tried to figure out the cohesive effect
+
                            of polylysine through time to get the best PLL-coated time. We gathered data just after
+
                            PLL treatment(0s), after 1min and after 5min. And we also recorded bacteria number in
+
                            the following 20 s. Here we provide the analysis of bacterial number variation after PLL
+
                            treatment.We respectively use PAO1, a kind of <em>Pseudomonas aeruginosa</em> and HCB1,
+
                            a kind of <em>E. coli</em> to handle the assay. PAO1 contains self-adhesive ability and
+
                            HCB1 has strong mobile ability. Using these genetically natural bacteria, we would
+
                            conclude with the effect of polylysine treatment.</p>
+
 
+
                        <p><em>As for PAO1</em>, Without polylysine coated, bacteria have strong swimming ability.
+
                            Because PAO1 is a kind of self-adhesive bacteria for experiment, thus we could see
+
                            adhesive bacteria increasing during assay.</p>
+
 
+
                        <p><img src="https://static.igem.org/mediawiki/2015/5/5c/Ustc-2015-pll90.png"
+
                                alt="Figure 5: no antibiotics bacterial number variation through time without PLL">
+
                        </p>
+
 
+
                        <p>With 20 ug/mL polylysine treatement, bacterial adhesive effect due to strong
+
                            electrostatic adhesion becomes stronger, and we, as well are able to observe the number
+
                            of adherent bacteria gradually rising until reaching equilibrium. </p>
+
 
+
                        <p><img src="https://static.igem.org/mediawiki/2015/e/ee/Developemnt.png"
+
                                alt="Figure 6: no antibiotics bacterial number variation through time with PLL"></p>
+
 
+
                        <p>After mathematical simulation we found that the adhesion rate of PAO1 by polylysine after
+
                            treatment of PLL is increased, while for E. coli, the adhesion quantity rise, not
+
                            fall.</p>
+
 
+
                        <p><img src="https://static.igem.org/mediawiki/2015/0/0d/USTC-PAO1.png" alt="图片名称"></p>
+
 
+
                        <p><em>As for HCB1</em>, a kind of <em>E. coli</em> and the number of bacteria inside
+
                            observed field is stable and relatively declined because of its lack of capability of
+
                            adhesion.<br><img src="https://static.igem.org/mediawiki/2015/6/6f/Development22.png"
+
                                              alt="图片名称"></p>
+
 
+
                        <p>After treated with 20ug/mL polylysine, adhesive bacteria number obviously
+
                            increased:<br><img src="https://static.igem.org/mediawiki/2015/9/96/4141414.png" alt="图片名称">
+
                        </p>
+
 
+
                        <p>Modeling on adhesion process strictly demonstrated the adhesion assay fits Langmuir
+
                            absorption isoform.</p>
+
 
+
                        <p><img src="https://static.igem.org/mediawiki/2015/a/a9/Ustc-bacterial_HCB1.png"
+
                                alt="图片名称"><br><img src="https://static.igem.org/mediawiki/2015/d/d8/20150901022.png"
+
                                                    alt="图片名称"><br>Simulation result:<br><img
+
                                src="https://static.igem.org/mediawiki/2015/8/86/20150903028.png" alt=""><br>Constants
+
                            value and details:<br><img src="https://static.igem.org/mediawiki/2015/6/66/20150903029.png"
+
                                                      alt=""></p>
+
 
+
                        <p>To know more about our modeling, please check <a href="http://tower.im">Modeling:
+
                            Adhesion Assay Modeling</a></p>
+
 
+
                        <p>This significant reverse of bacterial adhesion tendency stronly proved that polylysine
+
                            has effective adhesive ability for SPRING.</p>
+
 
+
                        <p>After we confirmed the feasibility of PLL treatment for bacterial adhesion, then the
+
                            treating time should be taken into consideration because only in the case of stable
+
                            adhesion is effective for SPRING to gather effective and stable data.</p>
+
 
+
                        <p>As the plot illustrates, bacteria number is growing at the beginning of PLL treatment
+
                            because of opening strong electrostatic adsorption derived from PLL. And after 1min, the
+
                            number of bacteria become stable, and there is nearly no difference on bacteria number
+
                            comparing after 1 min treatment to after 5 min treatment.</p>
+
 
+
                        <p>Consequently, we recommended that PLL treatment after 5 min would be a promising set for
+
                            SPRING to output stable data.</p>
+
 
+
                        <h3 id="Best_Measurement_Interval" class="scrollspy">Best Measurement Interval</h3>
+
 
+
                        <p>According to chemotaxis, bacteria responsing to surrounding pressure or beneficits will
+
                            be presented as change of bacteria movement. Here we analyzed bacterial movement data
+
                            treating with different antibiotics concentration, specificly, chloromycetin
+
                            concentration. And we gathered bacterial movement data just after antibiotics
+
                            treatment(0s), after 1 min treatment and after 5 min treatment, and we again recorded
+
                            all pictures in the following 18 s to get the dynamic data. Then, we concluded from the
+
                            percentage of bacterial movement as an important data to intercept the effect of
+
                            bacterial response on antibiotics.</p>
+
 
+
                        <p>The measurement assay is illustrated as following:</p>
+
 
+
                        <p><em>PLL(-)</em></p>
+
                        <table class="striped">
+
                            <thead>
+
                            <tr>
+
                                <th>Antibiotics Concentration(ug/mL)</th>
+
                                <th>Incubation Time(s)</th>
+
                            </tr>
+
                            </thead>
+
                            <tbody>
+
                            <tr>
+
                                <td>0</td>
+
                                <td>0</td>
+
                            </tr>
+
                            <tr>
+
                                <td>0</td>
+
                                <td>60</td>
+
                            </tr>
+
                            <tr>
+
                                <td>0</td>
+
                                <td>120</td>
+
                            </tr>
+
                            <tr>
+
                                <td>0</td>
+
                                <td>180</td>
+
                            </tr>
+
                            <tr>
+
                                <td>0</td>
+
                                <td>240</td>
+
                            </tr>
+
                            <tr>
+
                                <td>0</td>
+
                                <td>300</td>
+
                            </tr>
+
                            <tr>
+
                                <td>1</td>
+
                                <td>0</td>
+
                            </tr>
+
                            <tr>
+
                                <td>1</td>
+
                                <td>60</td>
+
                            </tr>
+
                            <tr>
+
                                <td>1</td>
+
                                <td>300</td>
+
                            </tr>
+
                            </tbody>
+
                        </table>
+
                        <p><em>PLL(+,20)</em></p>
+
                        <table  class="striped">
+
                            <thead>
+
                            <tr>
+
                                <th>Antibiotics Concentration(ug/mL)</th>
+
                                <th>Incubation Time(s)</th>
+
                            </tr>
+
                            </thead>
+
                            <tbody>
+
                            <tr>
+
                                <td>0</td>
+
                                <td>0</td>
+
                            </tr>
+
                            <tr>
+
                                <td>0</td>
+
                                <td>60</td>
+
                            </tr>
+
                            <tr>
+
                                <td>0</td>
+
                                <td>120</td>
+
                            </tr>
+
                            <tr>
+
                                <td>0</td>
+
                                <td>180</td>
+
                            </tr>
+
                            <tr>
+
                                <td>0</td>
+
                                <td>240</td>
+
                            </tr>
+
                            <tr>
+
                                <td>0</td>
+
                                <td>300</td>
+
                            </tr>
+
                            <tr>
+
                                <td>0.1</td>
+
                                <td>0</td>
+
                            </tr>
+
                            <tr>
+
                                <td>0.1</td>
+
                                <td>60</td>
+
                            </tr>
+
                            <tr>
+
                                <td>0.1</td>
+
                                <td>300</td>
+
                            </tr>
+
                            <tr>
+
                                <td>0.5</td>
+
                                <td>0</td>
+
                            </tr>
+
                            <tr>
+
                                <td>0.5</td>
+
                                <td>60</td>
+
                            </tr>
+
                            <tr>
+
                                <td>0.5</td>
+
                                <td>300</td>
+
                            </tr>
+
                            <tr>
+
                                <td>1</td>
+
                                <td>0</td>
+
                            </tr>
+
                            <tr>
+
                                <td>1</td>
+
                                <td>60</td>
+
                            </tr>
+
                            <tr>
+
                                <td>1</td>
+
                                <td>300</td>
+
                            </tr>
+
                            </tbody>
+
                        </table>
+
                        <p>When bacteria are treated with PLL, the movement of bacteria is been limited for strong
+
                            adhesion, after 5 min treatment, the proportion of movement decreased through
+
                            time.<br><img src="https://static.igem.org/mediawiki/2015/9/9b/-ustc-nosd.png" alt="图片名称"></p>
+
 
+
                        <p>However, when bacteria are not treated with PLL, incubated in 1ug/mL chloromycetin
+
                            solution, we got the movement percentage of bacteria as following:</p>
+
 
+
                        <p><img src="https://static.igem.org/mediawiki/2015/c/ca/Results-0.png" alt="图片名称"></p>
+
 
+
                        <p>The amount of moving bacteria is relatively increasing after 5 min antibiotics treatment.
+
                            Bacause of no PLL treatment, we could see the relative increase of bacteria movement
+
                            percentage.</p>
+
 
+
                        <p>As for bacteria treated with 20 ug/mL PLL, different pattern is observed:</p>
+
 
+
                        <p>This is the bacterial movement percentage variation with time, treated with 0.1 ug/mL
+
                            chloromycetin solution. Antibiotics pressure is not that strong, consequently, the
+
                            movement of bacteria is not ignited significantly.</p>
+
 
+
                        <p><img src="https://static.igem.org/mediawiki/2015/b/b0/Results-1.png" alt="图片名称"></p>
+
 
+
                        <p>When it comes to 0.5 ug/mL chloromycetin solution, the proportion of the moving bacteria
+
                            is increased. And as a matter of fact, the increase is quite corresponding through time,
+
                            reflecting bacteria impressive response on antibiotics substance.<br><img
+
                                    src="https://static.igem.org/mediawiki/2015/3/32/Ustc-2015-results-2.png" alt="图片名称">
+
                        </p>
+
 
+
                        <p>What if the concentration of chloromycetin solution up to 1 ug/mL?<br><img
+
                                src="https://static.igem.org/mediawiki/2015/0/0a/Ustc-2015-results-4.png" alt="图片名称"><br>A
+
                            quite linear increase of the proportion of the moving bacteria with time is observed.
+
                        </p>
+
 
+
                        <p>Consequently, according to our experiment, genetically naturally bacteria could respond
+
                            to chloromycetin solution from 0.1 ug/mL to more than 1ug/mL, which is quite promising
+
                            after genetic modification.</p>
+
 
+
                        <p><img src="https://static.igem.org/mediawiki/2015/c/c3/Finalresult.png" alt="图片名称"></p>
+
                    </div>
+
                 </div>
+
                <div class="col hide-on-small-only m3">
+
                    <div class="toc-wrapper pinned">
+
                        <ul class="section table-of-contents">
+
                            <li>
+
                                <a href="#characterization-of-optimal-conditions-on-polylysine-pll-coated-assay">Characterization
+
                                    of Optimal Conditions on Polylysine(PLL) Coated Assay</a>
+
                            </li>
+
                            <div class="divider"></div>
+
                            <li>
+
                                <a href="#Best_Bacterial_Developmental_Interval_Along_with_Recommended_Dilution_Conditions">Best
+
                                    Bacterial Developmental Interval Along with Recommended Dilution Conditions</a>
+
                            </li>
+
                            <div class="divider"></div>
+
                            <li>
+
                                <a href="#Best_PLL-Coated_Concentration_and_Pre-treatment_Time">Best PLL-Coated
+
                                    Concentration and Pre-treatment Time.</a>
+
                            </li>
+
                            <div class="divider"></div>
+
                            <li>
+
                                <a href="#Adhesion_Assay_with_PLL_treatment">Adhesion Assay with PLL treatment</a>
+
                            </li>
+
                            <div class="divider"></div>
+
                            <li>
+
                                <a href="#Best_PLL-Coated_Time">Best PLL-Coated Time</a>
+
                            </li>
+
                            <div class="divider"></div>
+
                            <li>
+
                                <a href="#Best_Measurement_Interval">Best Measurement Interval</a>
+
                            </li>
+
                        </ul>
+
                    </div>
+
                </div>
+
            </div>
+
 
         </div>
 
         </div>
 +
      </div>
 +
    </div>
  
        <div id="Film_Determination" class="row">
 
            <div class="card hoverable">
 
                <div class="col s12 m9">
 
                    <div class="card-content">
 
                        <p>Let's do some crasy science this time! We'll show you how we test and select the most
 
                            important part in our project, the special artificial original film!</p>
 
 
                        <h2 id="modeling-guide-us-choose-the-candidates" class="scrollspy">Modeling guide us choose the
 
                            candidates</h2>
 
 
                        <p>In our modeling, we start with single bacteria force, analyse the interaction between
 
                            bacteria and film, and propose the request of Young modulus (&lt;1GPa) of film
 
                            eventually.</p>
 
 
                        <p>And there are various film candidates come into the front.</p>
 
 
                        <h2 id="processing-film" class="scrollspy">Processing Film</h2>
 
 
                        <p>The film must be kind of soft and one of the surface should have enough reflectance while
 
                            another surface should have the ability to adhere to bacteria.<br>In fact, we don't hear any
 
                            of this type of film. So we need to produce the film by our own.</p>
 
 
                        <h2 id="film-i" class="scrollspy">Film I</h2>
 
 
                        <p><strong>Low Pressure Polyethylene</strong><br><img
 
                                src="https://static.igem.org/mediawiki/2015/e/ee/Ustc-filmcandid1.png"
 
                                alt="Figure 1: Film I, polyethylene"></p>
 
 
                        <p>Low pressure polyethylene is soft enough, and is too soft.</p>
 
 
                        <p>We use aerosol paint cover one of the surface. That can make the other surface of the film
 
                            will become a reflect surface. And we use 400ul 20ug/ml PLL coating the same surface at the
 
                            temperature of 4℃ to make this surface has the ability to adhere to bacteria.</p>
 
 
                        <p>But we fail with <strong>film I</strong> in the end that we can't get interference fringes.
 
                            Because the surface of low pressure polyethylene is not as smooth as we want, that will
 
                            cause a diffuse reflection. Thus we can not get interference inescapably.</p>
 
 
                        <p>So we need the film becoem more smooth and more elastic, and then come out <strong>film
 
                            II-Rubbers</strong></p>
 
 
                        <h2 id="film-ii" class="scrollspy">Film II</h2>
 
 
                        <p><strong>Rubbers-Condom</strong><br><img
 
                                src="https://static.igem.org/mediawiki/2015/b/b7/Ustc-filmcandid3.jpeg"
 
                                alt="Figure 2: Film II, condom"></p>
 
 
                        <p>If you want the material smooth enough and thick enough and elastic enough, that is, of
 
                            cause, <strong>condom!</strong></p>
 
 
                        <p>When we plan to use paint cover, the truth give us a hard hit. Because the film shrink too
 
                            much when we spray paint.</p>
 
 
                        <p>And we try silver mirror reaction as replacement. But still fail Because the ammonia erosion
 
                            is too severe.</p>
 
 
                        <p>Finally we find the final film candidate that we missed-<strong>Glass</strong></p>
 
 
                        <h2 id="film-iii" class="scrollspy">Film III</h2>
 
 
                        <p><strong>Cover slip</strong><br><img
 
                                src="https://static.igem.org/mediawiki/2015/e/ef/Ustc-filmcandid2.png"
 
                                alt="Figure 3: Film III, Cover slip"></p>
 
 
                        <p>The Young modulus of Glass is about 50GPa. But according to our <strong>adhesion
 
                            assay</strong> result and modeling, there will several numbers of fringes changes in the
 
                            experiment.</p>
 
 
                        <p>So we spraying it, coating it, testing it, and we made it!<br>The glass have a great
 
                            potential to reflect, so we can get interference very easy.<br>With modeling guidance, we
 
                            can know the relation between fringes changes and antibiotics concentration.<br><img
 
                                    src="https://static.igem.org/mediawiki/2015/b/b8/20150918067.jpg"
 
                                    alt="Figure 4 :Relation between fringes changes and antibiotics concentration"></p>
 
 
                        <p>Then we want to develop a calibration with three point.<br><img
 
                                src="https://static.igem.org/mediawiki/2015/e/e4/20150918066.jpg"
 
                                alt="Figure 5: Experimental results of calibration"><br>The fitting result indicate that
 
                            our modeling and normalization operation was exactly correct and effective. <strong>OUR
 
                                CRAZY MIND HIT OUR MODEL, AND OUR MODEL EXACYLY HIT OUR RESULT! WE LOVE
 
                                SCIENCE!</strong></p>
 
 
                        <p>That means the <strong>Processed Glass</strong> worth the name of <strong>special artificial
 
                            original film!</strong></p>
 
 
                    </div>
 
                </div>
 
                <div class="col hide-on-small-only m3">
 
                    <div class="toc-wrapper pinned">
 
                        <ul class="section table-of-contents">
 
                            <li>
 
                                <a href="#modeling-guide-us-choose-the-candidates">Modeling guide us choose the
 
                                    candidates</a>
 
                            </li>
 
                            <div class="divider"></div>
 
                            <li>
 
                                <a href="#processing-film">Processing Film</a>
 
                            </li>
 
                            <div class="divider"></div>
 
                            <li>
 
                                <a href="#film-i">Film I</a>
 
                            </li>
 
                            <div class="divider"></div>
 
                            <li>
 
                                <a href="#film-ii">Film II</a>
 
                            </li>
 
                            <div class="divider"></div>
 
                            <li>
 
                                <a href="#film-iii">Film III</a>
 
                            </li>
 
                        </ul>
 
                    </div>
 
                </div>
 
            </div>
 
        </div>
 
    </div>
 
  
 +
  </div>
 
</div>
 
</div>
</div>
 
 
 
</html>
 
</html>
 
{{USTC/footer}}
 
{{USTC/footer}}

Revision as of 01:10, 19 September 2015

Thank you for using the SPRING, a fast optical interference detecting device.

Before you using SPRING, please carefully read this instruction manual to fully understand the operations and the attentions.

Materials

To accomplish SPRING, you need prepare those material showed below:

Materials Number Price in estimation($)
12 in 1 display 1 92.08
CSI Interface Camera 1 13.88
Camera Bracket 1 1.42
3V laser head 2 0.31
5V laser head module 2 1.73
Arduino UNO R3 1 4.67
Universal circuit board 5 0.41
Breadboard 2 1.75
Dupont line 15 4.25
12V lithium battery 1 15.72
12.6V 3A Chargers 1 6.06
DC-DC step-down module 2 5.04
PP board 1 7.71
Miniature hand drill 1 20.46

Protection Guide

When you are making NDM, many tools are needed, as well as touching bacteria solution. Consequently, we provided four recommended protective measures for everyone. Please pay attention to personal safety when doing experiment:

  • Level A: Fundamental protective measure when producing NDM and conducting experiment. You may wear lab coat. When conducting experiments and assemble NDM, level A should be satisfied always.

  • Level B: In level B, personnel should not only wear lab coat, but wear nitrile gloves or latex gloves, which are necessary when touching bacteria solution. This procedure is the first step for detection.

  • Level C: Level C is the standard protocol for personnels when drilling. In addtion to level A, you should wear goggles. Goggles would protect your eyes when you are drilling plexiglass. And please do remember ROLL UP YOUR SLEEVES to prevent possible hurts and DO NOT WEAR GLOVES because it is not convenient when drilling.

  • Level D: This is the most complicated protective measure for spraing painting procedure. One should wear lab coats, along with goggles, masks and gloves to toally protect oneself considering extreme pungent odor volatilizing when painting.

Tools

  • Drill is used for cutting acrylic materials for assemble bracket.
  • Electric soldering iron, for welding electric circuit.
  • Glue gun is needed for adhesion between each other acrylic materials.

Display module

The display module contains 12 in 1 display with processor and buttons. Users are able to control the power, contrast and other display effects through buttons beside the display.

Raspberry Pi

Raspberry Pi, is the main hardware module that can take photos or videos of interference fringes, then our software analyses them or transmits to your PC. we can see the results on the screen.

Circuit Elements

  • Transformer: The responsibility of transformer is to drop voltage 12V produced by lithium battery to 5V, which is needed to supply cooling fan on Raspberry Pi and laser beam.
  • Breadboard: Many solderlessly electronic circuits tests will be conducted on breadboard.
  • Lithium-polymer battery: Provide power, 12V, 10000mA·h.

Optical Path Elements

The schematic figure of optical path is based on Michelson interferometer, to get more principle of optical path in SPRING, please refer to: Project-SPRING

Here we will introduce elements that are indispensable for interference patterns formation.

  • Webcam, containing CCD(charge-coupled device) image sensor, is able to capture picture, mainly for interference pattern capture.
  • Laser, wavelength: 650nm, 5V power supply
  • Expander is to expand the diameter of the laser beam. Two reasons are required to expand beam diameter. On the one hand, a larger diameter of the laser beam could avoid laser focusing on detecting film, preventing the possibility of film burned. On the other hand, laser beam would cover the film for better detection.
  • Beamsplitter combination, consists of three mirrors, a 50% reflection - 50% transmission beamsplitter(50%(R)/50%(T) in brief), a 80% reflection - 20% transmission beamsplitter(80%(R)/20%(T) in brief) and a 10% reflection- 90% transmission beamsplitter(10%(R)/90%(T) in brief). 1)50%(R)/50%(T) is in the front of picture. The reflection light will project to detecting film , while the transmission beamsplitter will continue going to reflection mirror. 2) Then why do we need The 80%(R)/20%(T), along with 10%(R)/90%(T)? Actually these combination is really important to decrease the relatively high intensity reflected from reflector. Much higher intensity from reflector will not fit the formation condition of interference pattern. 80%(R)/20%(T)+10%(R)/90%(T), approximately allowing 18% light approach reflector, are combined together on the bottom of the picture.
  • Reflector, a necessary element for interference pattern formation.
  • Sample trough with film, interacting with reflector to form interference ring.

Sample Trough

Our sample trough or sample box is designed based on the most proper size.

In the middle lies the empty part, which can be covered by film.

Figure13: Clips

These are our clips, there are two kinds of clips respecitvely used for different shape of film.

Figure14: CAD drawing of clips

Figure15: The bases of optical parts

And in order to adjust optical device on the same plain, you may need a plexiglass base to produce. You can produce your own base followed the drawing above.

Film Preparation

To see more about our ways to find final film through candidate, please refer to Modeling-Film Candidate.

Our film will be prepared in several processes illustrated below:

Coating film with polylysine

Add approximiately 400 ul 20ug/mL polylysine on the film, and store the film at 4 degree celcius for more than 4 hours. After 4 hours, absorb polylysine and then wash the film by PBS buffer. Note: polylysine can be recycled.

Adhesion Assay

Add 200 ul bacteria solution on film about 100s. Note: bacteria grown should be in steady state, and you should dilate bacteria and let its OD(600) approximiately reach 0.05

Operate Optical Path

Operating optical path within 100s would be highly recommended for users. To get the best images, you should observe and get fringes parallel to y axis of screen as possible.

Observe and Record

The measurement period is about 300s. Consequently, we recommend users to take a series of images each 10s during the beginning of 300s.

Build your electric circuit

Figure16: Electric circuit

Prepare RaspberryPi

The Raspberry Pi is a low cost, credit-card sized computer that plugs into a computer monitor or TV, and uses a standard keyboard and mouse. It is a capable little device that enables people of all ages to explore computing, and to learn how to program in languages like Scratch and Python. It’s capable of doing everything you’d expect a desktop computer to do, from browsing the internet and playing high-definition video, to making spreadsheets, word-processing, and playing games.(https://www.raspberrypi.org/help/what-is-a-raspberry-pi/)

The module we used is Raspberry-PI 2B, and you can buy from www.raspberrypi.org

First, write the system into a TF card and then put it on your Pi

The system RASPBIAN is recommended. Attention: TF card and SD card are different. TF card also called Micro SD card. You can download the updated system from www.raspberrypi.org

Then, begin to write. You should prepare a TF card, preferably a high-speed card is recommended above Class4 because the card was a direct impact on the running speed of Raspberry-Pi.

Get an Installation Tools win32diskimager (under win7), download at this site

Connect the TF card to your PC. Unzip the downloaded zip file debian system to give image file.

Extract and run win32diskimager Tools.

Select debian img file, and select the SD drive letter under "Device", then click "Write".

Then, you’ll see “Write successful”.

Connect and Power on your RaspberryPi

You should power your pi with 5 volts using a micro-usb line. Remember to connect your keyboard and mouse to pi first, because you can’t make anything without them.

Attention: don’t forget to power on the mini fan on the Raspberry-Pi due to too much heat generated.

Then connect the display device.

Figure16: The display module

And we need to connect the camera.

Figure17: Webcam

Finally, get started!

Figure18: Raspberry Pi

Get started

First, you should update your RaspberryPi. Just click the image of monitor. And then enter “sudo apt-get update”.

Figure19: Sudo apt-get update

Then enter “sudo apt-get install luvcview”

Figure20: Sudo apt-get install luvcview

After installing the software, restart your RaspberryPi and enjoy your journey with SPRING now!

How to use Raspberry Pi?

I. Power on the screen,and then the raspberrypi.Power on the mini fan.

Click this one:

Clipboard Image.png

II. Enter “luvcview” andthen press ”enter”

Clipboard Image.png

III. After enter “luvcview”,Move the table to see the “take a picture!!” Then, click this one. You canclick it for many times.

Clipboard Image.png

IV. After get pictures, youcan transfer the files to your computer via WLAN adapter.

First, you should restart the “networking”.

Enter “sudo /etc/init.d/networking restart”

You will see this.

You should memory the “bound to XXX.XXX.XX.X” in your mind.

Clipboard Image.png

V. Then ,you shouldinstall the software “FileZilla”.

Open it ,and enter ”sftp://XXX.XXX.XX.X”

User name is “pi”

Password is “raspberry”

Normally , the pictures are in /home/pi .

Just drag the file to you computer.

Clipboard Image.png

Build your BOX

As is showed in the following picture, there is a clapboard inside the box, above the electric circuit part.

Figure21: Build the box

Oh, remember all parts should be fixed with hot-melt adhesive (hot glue), in order to maintain stability.

This is hot glue gun. The gun uses a continuous-duty heating element to melt the plastic glue, which may be pushed through the gun by a mechanical trigger mechanism, or directly by the user. The glue squeezed out of the heated nozzle is initially hot enough to burn and even blister skin. The glue is tacky when hot, and solidifies in a few seconds to one minute. Hot melt adhesives can also be applied by dipping or spraying.

Figure22: Hot glue gun

Now, let’s see how to build it.

First, bond surfaces of your part and the workbench together. Look at the following picture, pay attention to the white thing. Yes, that’s it.

Figure23: Laser & Expander

Then, stick the optical part with the workbench. Look at the following picture carefully.

Figure24: Optical path

And in order to make it easy to adjust the position of the film, we invent a little sliding rail.

Figure25: Sliding rail

As for the clapboard inside the box, we invent a removable device. Actually, it’s just a pair of supporting plates. Notice the left of the following picture.

Figure26: Supporting plates

In this way, we can put the electric circuit part on the supporting plates directly.

Figure27: The inside structure

What's our tool when cutting acrylic?

Figure28: Cutting acrylic

Contact Us

University of Science and Technology of China, No.96, JinZhai Road Baohe District,Hefei,Anhui, 230026,P.R.China.

Links