Difference between revisions of "Team:KU Leuven/Modeling"
Line 103: | Line 103: | ||
<div class="subtextrow"> | <div class="subtextrow"> | ||
− | <div class="subtext"> | + | |
− | + | <div class="subtext"> | |
− | + | <a href = "https://2015.igem.org/Team:KU_Leuven/Modeling/Top"> | |
− | + | <h2>Colony level</h2> | |
− | + | <p> | |
− | + | Our colony layer model relies on a Keller-Segel type system of differential equations. These equations are simulated using finite differences. <br/> | |
− | </div> | + | <div class="more"><p>Learn more</p> |
− | </p> | + | </div> |
− | </a> | + | </p> |
− | </div> | + | </a> |
+ | </div> | ||
<div class="whitespace"> | <div class="whitespace"> | ||
</div> | </div> | ||
− | <div class=" | + | <div class="subtext"> |
− | < | + | <a href = ""> |
− | + | <h2>Hybrid model</h2> | |
− | + | <p> | |
− | Coming | + | Coming soon <br/> |
− | </p> | + | <div class="more"><p></p> |
− | </div> | + | </div> |
− | </div> | + | </p> |
+ | </a> | ||
+ | </div> | ||
<div class="whitespace"> | <div class="whitespace"> | ||
</div> | </div> | ||
− | <div class=" | + | <div class="subtext"> |
− | < | + | <a href = ""> |
− | + | <h2>Internal model</h2> | |
− | + | <p> | |
− | Coming | + | Coming soon <br/> |
− | </p> | + | <div class="more"><p></p> |
− | </div> | + | </div> |
− | </div> | + | </p> |
+ | </a> | ||
+ | </div> | ||
+ | |||
</div> | </div> | ||
+ | |||
+ | <!---------------------------------------------------Sponsors-----------------------------------------------------------------> | ||
+ | |||
+ | |||
<div class="center" id="footer"> | <div class="center" id="footer"> |
Revision as of 08:22, 20 August 2015
The fascinating properties of pattern creating bacteria may be translated into the language of mathematics. In this subsection we are investigating the equations behind the behaviour of the genetically modified organisms created in the wetlab. We do so using a layered approach. Colony level modeling employs partial differential equations to describe large cell groups which are treated as a continuum. Internal level models describe the interactions that happen within single cells. Finally the hybrid model merges the two approaches into a final description of our pattern forming cells.