|
|
Line 16: |
Line 16: |
| <html><script>jQuery('#menulin_project, #menulin_project_description').addClass('current');</script></header> | | <html><script>jQuery('#menulin_project, #menulin_project_description').addClass('current');</script></header> |
| <!-- Main --> | | <!-- Main --> |
− | | + | <style>.faabig:before,.faabig:after{font-size:1.8em; margina:0;} .faabig{position:absolute; right:0; top:0.9em;} .header4{position:relative; border:0 !important;} .header4 span { border-bottom: 1px dotted #AAA; display: block; padding-bottom: 5px; margin-right: 1.7em;}</style> |
| <section id="cta" style="background-image:url('https://static.igem.org/mediawiki/2015/f/fe/Unitn_pics_cta_projectdescription.jpg');" data-stellar-background-ratio="0.4"> | | <section id="cta" style="background-image:url('https://static.igem.org/mediawiki/2015/f/fe/Unitn_pics_cta_projectdescription.jpg');" data-stellar-background-ratio="0.4"> |
| <header> | | <header> |
Line 32: |
Line 32: |
| </header> | | </header> |
| <p style="margin-bottom:1em;">Microbial Fuel Cells (MFCs) are bio-electrochemical systems that drive current by using bacteria, that are isolated often times from waste waters or soil. Modeling the metabolism and electron transfer strategies of the bacteria living in waste waters through a controlled system based on a single species can help to optimize and enhance the MFCs technological landscape.Our idea is to optimize MFC’s platform using an engineered E. coli that exploits sunlight to live better under stressful conditions and that has an increased electron production.</p> | | <p style="margin-bottom:1em;">Microbial Fuel Cells (MFCs) are bio-electrochemical systems that drive current by using bacteria, that are isolated often times from waste waters or soil. Modeling the metabolism and electron transfer strategies of the bacteria living in waste waters through a controlled system based on a single species can help to optimize and enhance the MFCs technological landscape.Our idea is to optimize MFC’s platform using an engineered E. coli that exploits sunlight to live better under stressful conditions and that has an increased electron production.</p> |
− | <a class="fancybox wow zoomIn" rel="group" href="https://static.igem.org/mediawiki/2015/4/4b/Unitn_pics_project_mfc_martin.png" style="position:relative; margin-top:0; background-size:cover;"><img src="https://static.igem.org/mediawiki/2015/0/01/Unitn_pics_project_scheme1.jpg" style="width:100%; max-width:1186px;"></img> | + | <a class="fancybox wow zoomIn" rel="group" href="https://static.igem.org/mediawiki/2015/0/05/Unitn_pics_project_mfc_martin_thumb.jpg" style="position:relative; margin-top:0; background-size:cover;"><img src="https://static.igem.org/mediawiki/2015/0/01/Unitn_pics_project_scheme1.jpg" style="width:100%; max-width:1186px;"></img> |
| | | |
− | <img src="https://static.igem.org/mediawiki/2015/8/82/Unitn_pics_project_scheme2.png" style="position:absolute; width:45%; bottom:25px; right:20px;" class="wow zoomIn delay06"></img> | + | <img src="https://static.igem.org/mediawiki/2015/8/82/Unitn_pics_project_scheme2.png" style="position:absolute; width:45%; bottom:25px; right:20px;" class="wow zoomIn delay05"></img> |
| </a> | | </a> |
| <p style="margin-top:1em;">A typical MFC is composed of two separate chambers, the anode and the cathode, separated by a proton exchange membrane (PEM). Bacteria are grown in the anode under anaerobic condition. The electrons are the product of the bacteria metabolism. The lack of oxygen as acceptor enables the electrons to be transferred to the electrode. In the cathode, electrons combine with oxygen and protons to form water.</p> | | <p style="margin-top:1em;">A typical MFC is composed of two separate chambers, the anode and the cathode, separated by a proton exchange membrane (PEM). Bacteria are grown in the anode under anaerobic condition. The electrons are the product of the bacteria metabolism. The lack of oxygen as acceptor enables the electrons to be transferred to the electrode. In the cathode, electrons combine with oxygen and protons to form water.</p> |
Line 47: |
Line 47: |
| </header> | | </header> |
| | | |
− | <div class="row"> | + | <div class="row" > |
− | <div class="6u 12u(narrower)"> | + | <div class="6u 12u(narrower) wow fadeInLeft"> |
− | <h4 class="header4">Life in the anode</h4> | + | <h4 class="header4 wow flipInX delay05"><span>Life in the anode</span> <i class="faabig flaticon-bacteria3"></i></h4> |
− |
| + | |
− | <p>In the anode there is no oxygen and bacteria must survive under anaerobic conditions. Our system uses E. coli as the model organism. E. coli is a facultative anaerobic bacterium, able to live without oxygen undergoing fermentation. In these conditions, the bacterial metabolism is slowed down and thus affecting the electrons production. Our idea is to increase E. coli viability in the anaerobic anode, in order to optimize electricity production.</p> | + | <p style="clear:both;">In the anode there is no oxygen and bacteria must survive under anaerobic conditions. Our system uses E. coli as the model organism. E. coli is a facultative anaerobic bacterium, able to live without oxygen undergoing fermentation. In these conditions, the bacterial metabolism is slowed down and thus affecting the electrons production. Our idea is to increase E. coli viability in the anaerobic anode, in order to optimize electricity production.</p> |
| </div> | | </div> |
| | | |
− | <div class="6u 12u(narrower)"> | + | <div class="6u 12u(narrower) wow fadeInRight"> |
− | <h4 class="header4">Exploiting sunlight power: Proteorhodopsin </h4> | + | <h4 class="header4 wow flipInX delay05"> <span> Exploiting sunlight power: Proteorhodopsin </span><i class="faabig flaticon-sunbeam "></i> </h4> |
− | <p>Proteorhodopsin (PR) is a light-powered proton pump that belongs to the rhodopsin family. This 7-transmembrane protein exploits light to create an outward proton gradient, increasing the proton motive force (pmf) across the membrane. The generated pmf can subsequently power cellular processes. In particular, PR supports a light-driven ATP synthesis as proton reenter the cell through the H+-ATP synthetase complex. Therefore PR should increase the lifespan of E.coli and the electron flow under anaerobic conditions.</p> | + | <p style="clear:both;">Proteorhodopsin (PR) is a light-powered proton pump that belongs to the rhodopsin family. This 7-transmembrane protein exploits light to create an outward proton gradient, increasing the proton motive force (pmf) across the membrane. The generated pmf can subsequently power cellular processes. In particular, PR supports a light-driven ATP synthesis as proton reenter the cell through the H+-ATP synthetase complex. Therefore PR should increase the lifespan of E.coli and the electron flow under anaerobic conditions.</p> |
| </div> | | </div> |
| </div> | | </div> |
| | | |
| <div class="row"> | | <div class="row"> |
− | <div class="6u 12u(narrower)"> | + | <div class="6u 12u(narrower) wow fadeInLeft"> |
− | <h4 class="header4">Retinal-producer: blh</h4> | + | <h4 class="header4 wow flipInX delay05"> <span>Retinal-producer: blh</span> <i class="faabig flaticon-atom27"></i></h4> |
− | <p>Proteorhodopsin needs retinal as chromophore. In the MFC, PR-engineered E. coli can be supplemented with all-trans-retinal. A cheaper solution is to engineer a retinal-producer E. coli with β-carotene 15,15’-dioxygenase (encoded by the gene blh), an enzyme that splits one molecule of β-carotene into two molecules of retinal. </p> | + | <p style="clear:both;">Proteorhodopsin needs retinal as chromophore. In the MFC, PR-engineered E. coli can be supplemented with all-trans-retinal. A cheaper solution is to engineer a retinal-producer E. coli with β-carotene 15,15’-dioxygenase (encoded by the gene blh), an enzyme that splits one molecule of β-carotene into two molecules of retinal. </p> |
| | | |
− | <h4 class="header4">pncB: an electron producer booster </h4> | + | <h4 class="header4 wow flipInX delay05"> <span>pncB: an electron producer booster</span> <i class="faabig flaticon-atomic4"></i></h4> |
− | <p>We planned to increase electrons production by over-expressing pncB. This gene encodes for the enzyme NAPRTase (nicotinic acid phosphorbosyl-transferase) that catalyzes the formation of nicotinate mono-nucleotide, a direct precursor of NAD, starting from NA. The presence of higher levels of NAD should push the cell to produce more electron carriers molecules (NADH), thus increasing electricity.</p> | + | <p style="clear:both;">We planned to increase electrons production by over-expressing pncB. This gene encodes for the enzyme NAPRTase (nicotinic acid phosphorbosyl-transferase) that catalyzes the formation of nicotinate mono-nucleotide, a direct precursor of NAD, starting from NA. The presence of higher levels of NAD should push the cell to produce more electron carriers molecules (NADH), thus increasing electricity.</p> |
| </div> | | </div> |
| | | |
− | <div class="6u 12u(narrower)"> | + | <div class="6u 12u(narrower) wow fadeInRight"> |
− | <h4 class="header4">How can electrons be stolen?</h4> | + | <h4 class="header4 wow flipInX delay05"> <span>How can electrons be stolen?</span><i class="faabig flaticon-chemistry33"></i></h4> |
− | <p>Electrons can be stolen by exogenous mediators or by expressing heterologous-cytochrome in E. coli. Shewanella odenensis Mtr electrons transport pathway transfers metabolic electrons across the double membrane. Electrons are transported from CymA to MtrA and from MtrA to MtrC through the MtrCAB complex. The electrons coming out from MtrC are in direct contact with the electrodes. Alternatively, electrons can be transferred to the electrodes by exogenous chemical redox molecules called mediators (e.g. neutral red and methylen blue).</p> | + | <p style="clear:both;">Electrons can be stolen by exogenous mediators or by expressing heterologous-cytochrome in E. coli. Shewanella odenensis Mtr electrons transport pathway transfers metabolic electrons across the double membrane. Electrons are transported from CymA to MtrA and from MtrA to MtrC through the MtrCAB complex. The electrons coming out from MtrC are in direct contact with the electrodes. Alternatively, electrons can be transferred to the electrodes by exogenous chemical redox molecules called mediators (e.g. neutral red and methylen blue).</p> |
| </div> | | </div> |
| </div> | | </div> |