Difference between revisions of "Team:ETH Zurich/Modeling/Reaction-diffusion"
Line 50: | Line 50: | ||
$$\left.\frac{d\frac{\mathbf Y}{\nu}}{dt}\right|_{(\mathbf Y(t),t)} = f\left(\frac{\mathbf Y(t)}{\nu(t)},t\right)$$ | $$\left.\frac{d\frac{\mathbf Y}{\nu}}{dt}\right|_{(\mathbf Y(t),t)} = f\left(\frac{\mathbf Y(t)}{\nu(t)},t\right)$$ | ||
If we solve for \(\frac{d\mathbf Y}{dt}\), we get | If we solve for \(\frac{d\mathbf Y}{dt}\), we get | ||
− | $$\left.\frac{d\mathbf Y}{dt}\right|_{(\mathbf Y(t),t)} = \nu(t)\left(f\left(\frac{\mathbf Y(t)}{\nu(t)},t\right) + \frac{d}{dt}(\nu(t))^{-1} | + | $$\left.\frac{d\mathbf Y}{dt}\right|_{(\mathbf Y(t),t)} = \nu(t)\left(f\left(\frac{\mathbf Y(t)}{\nu(t)},t\right) + \mathbf Y\frac{d}{dt}(\nu(t))^{-1}\right)$$ |
</p> | </p> | ||
Revision as of 09:25, 2 September 2015
- Project
- Modeling
- Lab
- Human
Practices - Parts
- About Us
Reaction-diffusion Models
Introduction
While single-cell models are useful for correctly implementing and debugging chemical reaction models, they are not sufficient to fully understand the real-life functionality of our system. Since an essential part of our system is increasing the perceived concentrations of lactate and AHL through co-localization, it is necessary to model the concentrations the chemical species though a reaction-diffusion system.
"Doughnut" model in COMSOL
Geometry
Assumptions
- Target mammalian cell located in the center of the well
- Constant rate of lactate production
- E. coli bound to target cell abstracted into homogeneous layer around target cell
- Two different forms of unbound E. coli
- Discrete: single cell of E. coli suspended in the medium
- Bulk: reactions of the rest of the E. coli simulated in same space as medium
- Lactate represented as two states: inside and outside E. coli, denoted \(Lac_\text{int}\) and \(Lac_\text{ext}\), respectively
- \(Lac_\text{int}\) can diffuse freely through medium and membranes, \(Lac_\text{ext}\) cannot
- Use to simulate different import and export rates of lactate into E. coli
- Bulk E. coli grow logistically
Concentration correction for differing volumes
Since we are assuming a fixed number of bound E. coli to the target cell and since diffusion occurs almost instantly in our well, the concentrations in the doughnut will be accurate if we set its radius such that the area is the correct value. \begin{align*} A_\text{doughnut} &= \pi(r_\text{target} + r_\text{doughnut})^2 - \pi r_\text{target}^2 = n_\text{bound}\pi r_\textit{E. coli}^2 = n_\text{bound}A_\text{bound}\\ \Rightarrow r_\text{doughnut} &= \sqrt{n_\text{bound} r_\textit{E. coli}^2 + r_\text{target}^2} - r_\text{target} \end{align*} Unfortunately, the same principle does not apply for the bulk due to the logistic growth of the E. coli, so a more nuanced approach is necessary. Let \(n\) represent the number of chemical species and \(t_\text{sim}\) be our total simulation time. Let \(\mathbf X:[0,tsim]\longrightarrow \mathbb R^n\) be a function representing the molar concentrations of our chemical species over the simulation period. Then our system of non-linear ordinary differential equations (ODEs) can be represented by the following equation $$\left.\frac{d\mathbf X}{dt}\right|_{(\mathbf X(t),t)} = f(\mathbf X(t),t)$$ The units of \(X_i\) are \(\frac{\text{mol}}{L_\textit{E. coli}}\), we can define a new function \(\mathbf Y(t) := \nu(t)\mathbf X(t)\) representing the concentrations of the species within our simulated bulk, where $$\nu(t) := \frac{n_\text{bulk}A_\textit{E. coli}}{A_\text{bulk}}$$ Our original ODE system after this change of variables is then $$\left.\frac{d\frac{\mathbf Y}{\nu}}{dt}\right|_{(\mathbf Y(t),t)} = f\left(\frac{\mathbf Y(t)}{\nu(t)},t\right)$$ If we solve for \(\frac{d\mathbf Y}{dt}\), we get $$\left.\frac{d\mathbf Y}{dt}\right|_{(\mathbf Y(t),t)} = \nu(t)\left(f\left(\frac{\mathbf Y(t)}{\nu(t)},t\right) + \mathbf Y\frac{d}{dt}(\nu(t))^{-1}\right)$$
Diffusion and transport of chemical species
Under alkaline conditions, E. coli actively import lactate via a proton-motive symporter. Thus, a cross-membrane transport reaction had to be implemented. Since this is not possible directly in COMSOL, we had to model lactate in two states. Suppose our reference is the subspace of the interiors of the E. coli. We then defined the two states \(Lac_\text{int}\) and \(Lac_\text{ext}\), denoting intracellular and extracellular lactate, respectively. \(Lac_\text{ext}\) is produced by the target cell and can diffuse freely though the medium and all membranes. \(Lac_\text{int}\) is in equilibrium with \(Lac_\text{ext}\) with rate constants set to maintain a 20-fold difference of lactate concentration between interior and exterior. $$ Lac_\text{ext} \mathop{\mathop{\xrightarrow{\hspace{4em}}}^{\xleftarrow{\hspace{4em}}}}_{k_\text{int}}^{k_{\mathrm{ext}}} Lac_\text{int} \qquad \frac{k_\text{int}}{k_\text{ext}}\approx 20 $$ In addition, only the \(Lac_\text{int}\) state can react with the other chemical species in the E. coli.
AHL is able to freely diffusion in the medium and across membranes. All other chemical species are only able to diffuse intracellularly. The effective diffusion coefficients of AHL and Lactate through the E. coli membrane \(D_e\) were approximated by the method proposed by [Stewart 2003] as a fraction of their respective diffusion coefficients in water \(D_{aq}\) by the relation $$\frac{D_e}{D_{aq}}\approx 0.25$$
Four cases
To test whether our system acts as an AND gate on our two inputs (higher lactate production and co-localization signals), we combinatorially tested our system in environments with high vs. low lactate production and E. coli co-localization vs. dispersion.