Difference between revisions of "Team:ETH Zurich/Modeling/Single-cell Model"

m
Line 5: Line 5:
 
<div class="expContainer">
 
<div class="expContainer">
 
<h1>Combined Model</h1>
 
<h1>Combined Model</h1>
 
+
<h2> Introduction </h2>
 +
<h2> Single cell model </h2>
 +
<h3> Reactions</h3>
 +
<h3> Equations</h3>
 +
\begin{align*}
 +
\frac{d[LacI]}{dt}&=\frac{a_\mathrm{LacI} \cdot (\frac{[Lact]_{out}}{K_\mathrm{M,appLact}})^{n_1}}{1+(\frac{[Lact]_{out}}{K_\mathrm{M,appLact}})^{n_1}}-d_{\mathrm{LacI}}[LacI]\\
 +
\frac{d[LuxR]}{dt}&=\frac{a_\mathrm{LuxR} \cdot (\frac{[Lact]_{out}}{K_\mathrm{M,appLact}})^{n_1}}{1+(\frac{[Lact]_{out}}{K_\mathrm{M,appLact}})^{n_1}} \cdot \frac{1}{1+(\frac{[LacI]}{K_{\mathrm{R,LacI}}\cdot (\gamma_2+1)})^{n_\mathrm{LacI}}}-d_{\mathrm{LuxR}}[LuxR]\\
 +
[LuxRAHL]&= \frac{[AHL]\cdot [LuxR]}{K_{\mathrm{d,LuxRAHL}}+[AHL]}\\
 +
\frac{d[LuxI]}{dt}&=a_{\mathrm{LuxI}}k_{\mathrm{leaky}}([LuxR]-[LuxRAHL])+\frac{a_{\mathrm{LuxI}}(\frac{[LuxRAHL]}{K_{\mathrm{a,LuxRAHL}}})^2}{1+(\frac{[LuxRAHL]}{K_{\mathrm{a,LuxRAHL}}})^2}-d_{\mathrm{LuxI}}[LuxI]\\
 +
\frac{d[AHL]}{dt}&=a_{\mathrm{AHL}}[LuxI]-d_{\mathrm{AHL}}[AHL]-\frac{v_\mathrm{Aiia}\cdot [AHL]}{K_{\mathrm{M,AiiA}}+[AHL]}\\
 +
\frac{d[GFP]}{dt}&=a_\mathrm{GFP}k_{\mathrm{leaky}}([LuxR]-[LuxRAHL])+\frac{a_\mathrm{GFP}(\frac{[LuxRAHL]}{K_{\mathrm{a,LuxRAHL}}})^2}{1+(\frac{[LuxRAHL]}{K_{\mathrm{a,LuxRAHL}}})^2}-d_{\mathrm{GFP}}[GFP]\\
 +
K_\mathrm{d-LuxRAHL} &= \frac{k_\mathrm{-LuxRAHL}}{k_\mathrm{LuxRAHL}}\\
 +
\end{align*}
 +
<h3> Simulation</h3>
 
</div>
 
</div>
 
</div>
 
</div>
 
</html>
 
</html>

Revision as of 12:45, 5 September 2015

"What I cannot create I do not understand."
- Richard Feynmann

Combined Model

Introduction

Single cell model

Reactions

Equations

\begin{align*} \frac{d[LacI]}{dt}&=\frac{a_\mathrm{LacI} \cdot (\frac{[Lact]_{out}}{K_\mathrm{M,appLact}})^{n_1}}{1+(\frac{[Lact]_{out}}{K_\mathrm{M,appLact}})^{n_1}}-d_{\mathrm{LacI}}[LacI]\\ \frac{d[LuxR]}{dt}&=\frac{a_\mathrm{LuxR} \cdot (\frac{[Lact]_{out}}{K_\mathrm{M,appLact}})^{n_1}}{1+(\frac{[Lact]_{out}}{K_\mathrm{M,appLact}})^{n_1}} \cdot \frac{1}{1+(\frac{[LacI]}{K_{\mathrm{R,LacI}}\cdot (\gamma_2+1)})^{n_\mathrm{LacI}}}-d_{\mathrm{LuxR}}[LuxR]\\ [LuxRAHL]&= \frac{[AHL]\cdot [LuxR]}{K_{\mathrm{d,LuxRAHL}}+[AHL]}\\ \frac{d[LuxI]}{dt}&=a_{\mathrm{LuxI}}k_{\mathrm{leaky}}([LuxR]-[LuxRAHL])+\frac{a_{\mathrm{LuxI}}(\frac{[LuxRAHL]}{K_{\mathrm{a,LuxRAHL}}})^2}{1+(\frac{[LuxRAHL]}{K_{\mathrm{a,LuxRAHL}}})^2}-d_{\mathrm{LuxI}}[LuxI]\\ \frac{d[AHL]}{dt}&=a_{\mathrm{AHL}}[LuxI]-d_{\mathrm{AHL}}[AHL]-\frac{v_\mathrm{Aiia}\cdot [AHL]}{K_{\mathrm{M,AiiA}}+[AHL]}\\ \frac{d[GFP]}{dt}&=a_\mathrm{GFP}k_{\mathrm{leaky}}([LuxR]-[LuxRAHL])+\frac{a_\mathrm{GFP}(\frac{[LuxRAHL]}{K_{\mathrm{a,LuxRAHL}}})^2}{1+(\frac{[LuxRAHL]}{K_{\mathrm{a,LuxRAHL}}})^2}-d_{\mathrm{GFP}}[GFP]\\ K_\mathrm{d-LuxRAHL} &= \frac{k_\mathrm{-LuxRAHL}}{k_\mathrm{LuxRAHL}}\\ \end{align*}

Simulation