Difference between revisions of "Team:ETH Zurich/Modeling/Single-cell Model"

Line 9: Line 9:
 
<h3> Reactions</h3>  
 
<h3> Reactions</h3>  
 
\begin{align*}
 
\begin{align*}
\text{Lact}_{\text{out}}&\mathop{\xrightarrow{\hspace{4em}}}^{K_{\mathrm{M,LldP}},v_\mathrm{LldP}} \text{Lact}_{\text{in}}\\
+
&\mathop{\xrightarrow{\hspace{4em}}}^{\displaystyle\mathop{\downarrow}^{\text{Lact}}} \text{LacI}\\
&\mathop{\xrightarrow{\hspace{4em}}}^{\displaystyle\mathop{\downarrow}^{\text{Lact}_{in}}} \text{LacI}\\
+
&\mathop{\xrightarrow{\hspace{4em}}}^{\displaystyle\mathop{\downarrow}^{\text{Lact}}} \text{GFP}\\
&\mathop{\xrightarrow{\hspace{4em}}}^{\displaystyle\mathop{\downarrow}^{\text{Lact}_{in}}} \text{GFP}\\
+
 
&\mathop{\xrightarrow{\hspace{4em}}}^{\displaystyle\mathop{\bot}^{\text{LacI}}} \text{GFP}\\
 
&\mathop{\xrightarrow{\hspace{4em}}}^{\displaystyle\mathop{\bot}^{\text{LacI}}} \text{GFP}\\
 
\text{IPTG} + \text{LacI} &\mathop{\mathop{\xrightarrow{\hspace{4em}}}^{\xleftarrow{\hspace{4em}}}}_{k_{\mathrm{IL}}}^{k_{\mathrm{-IL}}} \text{IL}\\
 
\text{IPTG} + \text{LacI} &\mathop{\mathop{\xrightarrow{\hspace{4em}}}^{\xleftarrow{\hspace{4em}}}}_{k_{\mathrm{IL}}}^{k_{\mathrm{-IL}}} \text{IL}\\
Line 27: Line 26:
 
<h3> Equations</h3>  
 
<h3> Equations</h3>  
 
\begin{align*}
 
\begin{align*}
\frac{d[LacI]}{dt}&=\frac{a_\mathrm{LacI} \cdot (\frac{[Lact]_{out}}{K_\mathrm{M,appLact}})^{n_1}}{1+(\frac{[Lact]_{out}}{K_\mathrm{M,appLact}})^{n_1}}-d_{\mathrm{LacI}}[LacI]\\
+
\frac{d[LacI]}{dt}&=\frac{a_\mathrm{LacI} \cdot (\frac{[Lact]}{K_\mathrm{M,appLact}})^{n_1}}{1+(\frac{[Lact]}{K_\mathrm{M,appLact}})^{n_1}}-d_{\mathrm{LacI}}[LacI]\\
\frac{d[LuxR]}{dt}&=\frac{a_\mathrm{LuxR} \cdot (\frac{[Lact]_{out}}{K_\mathrm{M,appLact}})^{n_1}}{1+(\frac{[Lact]_{out}}{K_\mathrm{M,appLact}})^{n_1}} \cdot \frac{1}{1+(\frac{[LacI]}{K_{\mathrm{R,LacI}}\cdot (\gamma_2+1)})^{n_\mathrm{2}}}-d_{\mathrm{LuxR}}[LuxR]\\
+
\frac{d[LuxR]}{dt}&=\frac{a_\mathrm{LuxR} \cdot (\frac{[Lact]}{K_\mathrm{M,appLact}})^{n_1}}{1+(\frac{[Lact]}{K_\mathrm{M,appLact}})^{n_1}} \cdot \frac{1}{1+(\frac{[LacI]}{K_{\mathrm{R,LacI}}\cdot (\gamma_2+1)})^{n_\mathrm{2}}}-d_{\mathrm{LuxR}}[LuxR]\\
 
[LuxRAHL]&= \frac{[AHL]\cdot [LuxR]}{K_{\mathrm{d,LuxRAHL}}+[AHL]}\\
 
[LuxRAHL]&= \frac{[AHL]\cdot [LuxR]}{K_{\mathrm{d,LuxRAHL}}+[AHL]}\\
 
\frac{d[LuxI]}{dt}&=a_{\mathrm{LuxI}}k_{\mathrm{leaky}}([LuxR]-[LuxRAHL])+\frac{a_{\mathrm{LuxI}}(\frac{[LuxRAHL]}{K_{\mathrm{a,LuxRAHL}}})^2}{1+(\frac{[LuxRAHL]}{K_{\mathrm{a,LuxRAHL}}})^2}-d_{\mathrm{LuxI}}[LuxI]\\
 
\frac{d[LuxI]}{dt}&=a_{\mathrm{LuxI}}k_{\mathrm{leaky}}([LuxR]-[LuxRAHL])+\frac{a_{\mathrm{LuxI}}(\frac{[LuxRAHL]}{K_{\mathrm{a,LuxRAHL}}})^2}{1+(\frac{[LuxRAHL]}{K_{\mathrm{a,LuxRAHL}}})^2}-d_{\mathrm{LuxI}}[LuxI]\\

Revision as of 12:51, 5 September 2015

"What I cannot create I do not understand."
- Richard Feynmann

Combined Model

Introduction

Single cell model

Reactions

\begin{align*} &\mathop{\xrightarrow{\hspace{4em}}}^{\displaystyle\mathop{\downarrow}^{\text{Lact}}} \text{LacI}\\ &\mathop{\xrightarrow{\hspace{4em}}}^{\displaystyle\mathop{\downarrow}^{\text{Lact}}} \text{GFP}\\ &\mathop{\xrightarrow{\hspace{4em}}}^{\displaystyle\mathop{\bot}^{\text{LacI}}} \text{GFP}\\ \text{IPTG} + \text{LacI} &\mathop{\mathop{\xrightarrow{\hspace{4em}}}^{\xleftarrow{\hspace{4em}}}}_{k_{\mathrm{IL}}}^{k_{\mathrm{-IL}}} \text{IL}\\ \varnothing&\mathop{\xrightarrow{\hspace{4em}}}^{a_{\mathrm{LuxR}}} \text{LuxR}\\ \text{AHL} + \text{LuxR} &\mathop{\mathop{\xrightarrow{\hspace{4em}}}^{\xleftarrow{\hspace{4em}}}}_{k_{\mathrm{LuxRAHL}}}^{k_{\mathrm{-LuxRAHL}}} \text{LuxRAHL}\\ &\mathop{\xrightarrow{\hspace{4em}}}_{a_\mathrm{LuxI},K_{\mathrm{a,LuxRAHL}}}^{\displaystyle\mathop{\downarrow}^{\text{LuxRAHL}}} \text{LuxI}\\ &\mathop{\xrightarrow{\hspace{4em}}}_{a_\mathrm{GFP},K_{\mathrm{a,LuxRAHL}}}^{\displaystyle\mathop{\downarrow}^{\text{LuxRAHL}}} \text{GFP}\\ \text{LuxI}&\mathop{\xrightarrow{\hspace{4em}}}^{a_{\mathrm{AHL}}}\text{AHL}+\text{LuxI}\\ \text{LuxR}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{LuxR}}}\varnothing\\ \text{AHL}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{AHL}}}\varnothing\\ \text{LuxRAHL}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{LuxRAHL}}}\varnothing\\ \text{LuxI}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{LuxI}}}\varnothing\\ \text{Aiia}+\text{AHL}&\mathop{\xrightarrow{\hspace{4em}}}^{K_{\mathrm{M}},v_{\mathrm{Aiia}}}\text{Aiia}\\ \end{align*}

Equations

\begin{align*} \frac{d[LacI]}{dt}&=\frac{a_\mathrm{LacI} \cdot (\frac{[Lact]}{K_\mathrm{M,appLact}})^{n_1}}{1+(\frac{[Lact]}{K_\mathrm{M,appLact}})^{n_1}}-d_{\mathrm{LacI}}[LacI]\\ \frac{d[LuxR]}{dt}&=\frac{a_\mathrm{LuxR} \cdot (\frac{[Lact]}{K_\mathrm{M,appLact}})^{n_1}}{1+(\frac{[Lact]}{K_\mathrm{M,appLact}})^{n_1}} \cdot \frac{1}{1+(\frac{[LacI]}{K_{\mathrm{R,LacI}}\cdot (\gamma_2+1)})^{n_\mathrm{2}}}-d_{\mathrm{LuxR}}[LuxR]\\ [LuxRAHL]&= \frac{[AHL]\cdot [LuxR]}{K_{\mathrm{d,LuxRAHL}}+[AHL]}\\ \frac{d[LuxI]}{dt}&=a_{\mathrm{LuxI}}k_{\mathrm{leaky}}([LuxR]-[LuxRAHL])+\frac{a_{\mathrm{LuxI}}(\frac{[LuxRAHL]}{K_{\mathrm{a,LuxRAHL}}})^2}{1+(\frac{[LuxRAHL]}{K_{\mathrm{a,LuxRAHL}}})^2}-d_{\mathrm{LuxI}}[LuxI]\\ \frac{d[AHL]}{dt}&=a_{\mathrm{AHL}}[LuxI]-d_{\mathrm{AHL}}[AHL]-\frac{v_\mathrm{Aiia}\cdot [AHL]}{K_{\mathrm{M,AiiA}}+[AHL]}\\ \frac{d[GFP]}{dt}&=a_\mathrm{GFP}k_{\mathrm{leaky}}([LuxR]-[LuxRAHL])+\frac{a_\mathrm{GFP}(\frac{[LuxRAHL]}{K_{\mathrm{a,LuxRAHL}}})^2}{1+(\frac{[LuxRAHL]}{K_{\mathrm{a,LuxRAHL}}})^2}-d_{\mathrm{GFP}}[GFP]\\ K_\mathrm{d-LuxRAHL} &= \frac{k_\mathrm{-LuxRAHL}}{k_\mathrm{LuxRAHL}}\\ \end{align*}

Simulation