Difference between revisions of "Team:London Biohackspace/lab-book"

Line 44: Line 44:
 
                   <h2>Experiments</h2>
 
                   <h2>Experiments</h2>
 
                       <h3>Expressing Miraculin in <i>S. cerevisiae</i></h3>
 
                       <h3>Expressing Miraculin in <i>S. cerevisiae</i></h3>
                       <p>The BioBrick encoding the Miraculin protein coding sequence will be synthesized and ligated into a pSB1C3 plasmid prior to submission to the iGEM registry.  Once this part has been synthesized, we aim to use the SureVector expression kit to create a plasmid capable of expressing the Miraculin protein.  In order to achieve this we will need to PCR amplify the coding sequence from the pSB1C3 plasmid to create a sequence containing the required SureVector overlap sequences.  This DNA fragment can then be used as our gene of interest during the SureVector plasmid assembly process.  The assembled plasmid will also contain a yeast autonomous replication sequence (yARS) as well as a LEU2 auxotrophic marker to allow for expression in Leucine deficient strains of S. cerevisiae.  Expression of the gene will be regulated through the use of the S. cerevisiae X-Gal Galactose inducible promoter provided with the SureVector kit.  The SureVector expression plasmid also contains a His-tagging sequence that we can use to characterise Miraclin expression once a yeast strain has be transformed with the plasmid.</p>
+
                       <p>The BioBrick encoding the (<i>S. cerevisiae</i> codon-optimised) Miraculin protein coding sequence will be synthesized and ligated into a pSB1C3 plasmid prior to submission to the iGEM registry.  Once this part has been synthesized, we aim to use the SureVector expression kit to create a plasmid capable of expressing the Miraculin protein.  In order to achieve this we will need to PCR amplify the coding sequence from the pSB1C3 plasmid to create a sequence containing the required SureVector overlap sequences.  This DNA fragment can then be used as our gene of interest during the SureVector plasmid assembly process.  The assembled plasmid will also contain a yeast autonomous replication sequence (yARS) as well as a LEU2 auxotrophic marker to allow for expression in Leucine deficient strains of S. cerevisiae.  Expression of the gene will be regulated through the use of the S. cerevisiae X-Gal Galactose inducible promoter provided with the SureVector kit.  The SureVector expression plasmid also contains a His-tagging sequence that we can use to characterise Miraclin expression once a yeast strain has be transformed with the plasmid.</p>
                       <h3>Expressing Lycopene in <i>S. cerevisiae</i></h3>
+
                       <h3>Expressing Lycopene in <i>E.coli</i> and <i>S. cerevisiae</i></h3>
                       <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.</p>
+
                       <p>The DNA sequences encoding the protein coding sequences for the genes CrtE, CrtB and CrtI that are required for lycopene biosynthesis will be synthesized with SureVector forward and reverse overlaps. Each gene will be separated with a T2A self-cleaving peptide sequence in order to improve upon the overall lycopene biosynthesis of the existing BioBrick part X which relies on multiple ribsome binding sequences within the DNA sequence. This sequence will then be used in conjunction with the SureVector expression vector assembly kit to produce a plasmid that can express the three genes in both E.coli and S. cerevisiae.  </p>
 
                       <h3>Creating Leucine and Uracil auxotrophic <i>S. cerevisiae</i>  strains</h3>
 
                       <h3>Creating Leucine and Uracil auxotrophic <i>S. cerevisiae</i>  strains</h3>
 
                       <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.</p>
 
                       <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.</p>

Revision as of 13:43, 13 September 2015

Protocols

Preparing liquid YEPD media

Preparing YEPD agar plates

Electroporation Transformation of E. coli DH5aplha

Electroporation Transformation of S. cerevisiae

Experiments

Expressing Miraculin in S. cerevisiae

The BioBrick encoding the (S. cerevisiae codon-optimised) Miraculin protein coding sequence will be synthesized and ligated into a pSB1C3 plasmid prior to submission to the iGEM registry. Once this part has been synthesized, we aim to use the SureVector expression kit to create a plasmid capable of expressing the Miraculin protein. In order to achieve this we will need to PCR amplify the coding sequence from the pSB1C3 plasmid to create a sequence containing the required SureVector overlap sequences. This DNA fragment can then be used as our gene of interest during the SureVector plasmid assembly process. The assembled plasmid will also contain a yeast autonomous replication sequence (yARS) as well as a LEU2 auxotrophic marker to allow for expression in Leucine deficient strains of S. cerevisiae. Expression of the gene will be regulated through the use of the S. cerevisiae X-Gal Galactose inducible promoter provided with the SureVector kit. The SureVector expression plasmid also contains a His-tagging sequence that we can use to characterise Miraclin expression once a yeast strain has be transformed with the plasmid.

Expressing Lycopene in E.coli and S. cerevisiae

The DNA sequences encoding the protein coding sequences for the genes CrtE, CrtB and CrtI that are required for lycopene biosynthesis will be synthesized with SureVector forward and reverse overlaps. Each gene will be separated with a T2A self-cleaving peptide sequence in order to improve upon the overall lycopene biosynthesis of the existing BioBrick part X which relies on multiple ribsome binding sequences within the DNA sequence. This sequence will then be used in conjunction with the SureVector expression vector assembly kit to produce a plasmid that can express the three genes in both E.coli and S. cerevisiae.

Creating Leucine and Uracil auxotrophic S. cerevisiae strains

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

RNA interference based regulation of RFP in E. coli

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Results

Expressing Miraculin in S. cerevisiae

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Expressing Lycopene in S. cerevisiae

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Creating Leucine and Uracil auxotrophic S. cerevisiae strains

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

RNAi based regulation of mRFP in E. coli

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.