Difference between revisions of "Team:Yale/notebook"

Line 172: Line 172:
 
     <div id="week7" data-reveal="" aria-labelledby="iGEM Modal" aria-hidden="true" role="dialog" class="reveal-modal grayModal">
 
     <div id="week7" data-reveal="" aria-labelledby="iGEM Modal" aria-hidden="true" role="dialog" class="reveal-modal grayModal">
 
       <h2 class="modal__title">Lessons from Week 6</h2>
 
       <h2 class="modal__title">Lessons from Week 6</h2>
       <p>Today, we're visiting a museum.</p>
+
       <p>This week we focused on troubleshooting our most pressing problems: growth for cyanobacteria and transformation for cyanobacteria and rhizobia. In addition, we continued to work on amplifying and creating constructs for FLP and CRISPR, methods we will try to use to knockout mutS. For the assembly of our promoters and genes into our plasmid backbone, we decided to test ELIC and LIC, cheaper and faster alternatives to Gibson Assembly. We abandoned the plasmid BBa_K125000 because it was too unreliable, having unclear sequencing and annotation data and yielding unsuccessful electroporation results. We continue to focus on pKT230 and pETcoco-2 as possible backbones for our beta homologs.</p>
       <p class="text-center"><img src="http://client.cameronyick.us/igem/assets/img/journal/pigeon.jpg"></p>
+
      <p>For cyanobacteria, the amount of time to form colonies on solid media is an obstacle to obtaining results for our experiments, thus we looked into getting a CO2 incubator to promote growth and researched liquid culture selection methods. For the transformation, we attempted natural transformation of pKT230 and pETcoco-2 into PCC 7002, and we hope to have results next week.</p>
       <p>Biofilm formation on surfaces is an issue in the medical field, naval industry, and other areas. We developed an anti-fouling peptide with two modular components: a mussel adhesion protein (MAP) anchor and LL-37, an antimicrobial peptide. MAPs can selectively attach to metal and organic surfaces via L-3,5-dihydroxyphenylalanine (L-DOPA), a nonstandard amino acid that was incorporated using a genetically recoded organism (GRO). Because this peptide is toxic to the GRO in which it is produced, we designed a better controlled inducible system that limits basal expression. This was achieved through a novel T7 riboregulation system that controls expression at both the transcriptional and translational levels.</p>
+
      <p>For rhizobia, we focused on troubleshooting our unclear electroporation results from last week. We redid our antibiotic resistance assays (kan, spec, strep, carb, rif) for all strains to confirm innate antibiotic resistances.</p>
       <p>Biofilm formation on surfaces is an issue in the medical field, naval industry, and other areas. We developed an anti-fouling peptide with two modular components: a mussel adhesion protein (MAP) anchor and LL-37, an antimicrobial peptide. MAPs can selectively attach to metal and organic surfaces via L-3,5-dihydroxyphenylalanine (L-DOPA), a nonstandard amino acid that was incorporated using a genetically recoded organism (GRO). Because this peptide is toxic to the GRO in which it is produced, we designed a better controlled inducible system that limits basal expression. This was achieved through a novel T7 riboregulation system that controls expression at both the transcriptional and translational levels.</p>
+
       <p class="text-center"><img src="https://static.igem.org/mediawiki/2015/1/16/Week6_1.jpeg"></p>
 +
       <p>We set up a growth assay to obtain a growth curve with which we can calculate doubling times and mid-log growth for our Rhizobia strains. In our first growth assay, R. tropici CIAT 899 showed growth but the S. meliloti strains did not. We set up another antibiotic assay and we are awaiting results.</p>
 +
       <p class="text-center"><img src="https://static.igem.org/mediawiki/2015/6/68/Week6_2.jpeg"></p>
 +
      <p>For transformation, we decided to try chemical transformation (CaCl2 method) and conjugation in addition to electroporation. To address the issues with contamination, we submitted 16S sequencing of master and working stocks of all our strains and of unexpected growth on selective plates and verified that the stocks we were using were in fact the strains we believed them to be.</p>
 
       <p class="text-center"><a href="dropbox.com/#week7" class="file__link">Go to the Lab Notebook</a></p>
 
       <p class="text-center"><a href="dropbox.com/#week7" class="file__link">Go to the Lab Notebook</a></p>
 
       <h4 class="week_log">Entry for week<a href="#" data-reveal-id="week1">-1</a><a href="#" data-reveal-id="week2">1</a><a href="#" data-reveal-id="week3">2</a><a href="#" data-reveal-id="week4">3</a><a href="#" data-reveal-id="week5">4</a><a href="#" data-reveal-id="week6">5</a><a href="#" data-reveal-id="week7">6</a><a href="#" data-reveal-id="week8">7</a><a href="#" data-reveal-id="week9">8</a><a href="#" data-reveal-id="week10">9</a><a href="#" data-reveal-id="week11">10</a><a href="#" data-reveal-id="week12">10+</a>
 
       <h4 class="week_log">Entry for week<a href="#" data-reveal-id="week1">-1</a><a href="#" data-reveal-id="week2">1</a><a href="#" data-reveal-id="week3">2</a><a href="#" data-reveal-id="week4">3</a><a href="#" data-reveal-id="week5">4</a><a href="#" data-reveal-id="week6">5</a><a href="#" data-reveal-id="week7">6</a><a href="#" data-reveal-id="week8">7</a><a href="#" data-reveal-id="week9">8</a><a href="#" data-reveal-id="week10">9</a><a href="#" data-reveal-id="week11">10</a><a href="#" data-reveal-id="week12">10+</a>

Revision as of 12:56, 16 September 2015


<!DOCTYPE html> Yale iGem 2015: Notebook

Lab Notebook