Difference between revisions of "Team:Tokyo Tech/Experiment/C4HSL-dependent growth assay"

Line 6: Line 6:
 
   <style type="text/css">
 
   <style type="text/css">
 
     table{
 
     table{
          width: 940px;
 
 
           margin-left: auto;
 
           margin-left: auto;
 
           margin-right: auto;
 
           margin-right: auto;
 
           margin-top:0px;
 
           margin-top:0px;
 
           }
 
           }
        td{
 
          text-align: center;
 
          }
 
 
   </style>
 
   </style>
 
   </head>
 
   </head>
 
   <body>
 
   <body>
 
     <div id="titlearea">
 
     <div id="titlearea">
       <h1>C4HSL dependent growth assay</h1>
+
       <h1>FimB dependent <i>fim</i> switch state_assay</h1>
 
     </div>
 
     </div>
 
     <div id="titlebottom">
 
     <div id="titlebottom">
     <h4 class="subtitle"><strong>コメント</strong></h4>
+
     <h4 class="subtitle"><strong>We have characterized previous parts.</strong></h4>
 
     </div>
 
     </div>
 
   <div class="texttop">
 
   <div class="texttop">
Line 28: Line 24:
 
  <div class="textarea">
 
  <div class="textarea">
 
     <h2 class="content2">contents</h2>
 
     <h2 class="content2">contents</h2>
       <h3 class="link"><a href="#1">1. Introduction</a></h3>
+
       <h3 class="link"><a href="#Introduction">1. Introduction</a></h3>
       <h3 class="link"><a href="#2">2. Summary of the Experiments</a></h3>
+
       <h3 class="link"><a href="#Summary">2. Summary of the Experiment</a></h3>
      <h3 class="link2"><a href="#21">2.1 C4HSL dependent CmR expression</a></h3>
+
       <h3 class="link"><a href="#Results">3. Results</a></h3>
      <h3 class="link2"><a href="#22">2.2 Adding an ssrA degradation tag</a></h3>
+
       <h3 class="link2"><a href="#Result1">3.1. Arabinose dependent FimE expression</a></h3>
      <h3 class="link2"><a href="#23">2.3 Realizing the payoff matrix</h3>
+
       <h3 class="link2"><a href="#Result2">3.2. FLA analysis</a></h3>
      <h3 class="link3"><a href="#231">2.3.1 Seeking the ideal Cm concentration</a></h3>
+
       <h3 class="link"><a href="#Discussion">4. Materials and Methods</a></h3>              
      <h3 class="link3"><a href="#232">2.3.2 Payoff matrix with the new Cm concentration</a></h3>
+
       <h3 class="link"><a href="#Materials">5. Materials and Methods</a></h3>
      <h3 class="link2"><a href="#24">2.4  Adding an ssrA degradation tag</a></h3>
+
       <h3 class="link2"><a href="#Const">5.1.  Construction</a></h3>
       <h3 class="link"><a href="#3">3. Result</a></h3>
+
       <h3 class="link2"><a href="#Protocol">5.2. Assay Protocol</a></h3>
       <h3 class="link2"><a href="#31">3.1 C4HSL-dependent CmR expression</a></h3>
+
         <h3 class="link3"><a href="#Protol1">5.2.1 Arabinose dependent FimE expression</a></h3>
       <h3 class="link2"><a href="#32">3.2 Adding an ssrA degradation tag</a></h3>
+
         <h3 class="link3"><a href="#Protol2">5.2.2. FLA analysis</a></h3>
      <h3 class="link2"><a href="#33">3.3  Realizing the payoff matrix</h3>
+
      <h3 class="link"><a href="#Reference">6. Reference</a></h3>
      <h3 class="link3"><a href="#331">3.3.1  Seeking the ideal Cm concentration</a></h3>
+
      <h3 class="link3"><a href="#332">3.3.2  Payoff matrix with the new Cm concentration</a></h3>
+
      <h3 class="link2"><a href="#34">3.4  Adding an ssrA degradation tag</a></h3>
+
       <h3 class="link"><a href="#4">4. Discussion</a></h3>
+
      <h3 class="link2"><a href="#41">4.1  The function of the ssrA tag</a></h3>
+
      <h3 class="link2"><a href="#42">4.2  </a></h3>               
+
       <h3 class="link"><a href="#5">5. Materials and Methods</a></h3>
+
       <h3 class="link2"><a href="#51">5.1.  Construction</a></h3>
+
       <h3 class="link2"><a href="#52">5.2 Assay Protocol</a></h3>
+
         <h3 class="link3"><a href="#521">5.2.1 C12HSL-dependent CmR expression assay</a></h3>
+
         <h3 class="link3"><a href="#522">5.2.2 Chloramphenicol-dependent Growth Assay </a></h3>
+
        <h3 class="link3"><a href="#523">5.2.3  Chloramphenicol-dependent Growth Assay with ssrA tag</a></h3>
+
        <h3 class="link3"><a href="#523">5.2.4  C12HSL-dependent CmR expression assay ([Cm] = 75 microg/mL)</a></h3>     
+
        <h3 class="link"><a href="#6">6. Reference</a></h3>
+
 
       <br>
 
       <br>
 
     </div>
 
     </div>
Line 63: Line 45:
 
     </div>
 
     </div>
 
   <div class="textarea">
 
   <div class="textarea">
           <h2 id="1" class="smalltitle">1. Introduction</h2>
+
           <h2 id="Introduction" class="smalltitle">1. Introduction</h2>
      <p class="text">We designed a signal-dependent growth system by using signaling molecules and antibiotic resistance gene. In our prisoner’s dilemma game, our prisoner coli A needs 3OC12HSL to acquire chloramphenicol resistance (CmR).<br>&nbsp;&nbsp;&nbsp;
+
      <p class="text">We decided that the <i>fim</i> switch, which the promoter containing repeated DNA sequence can be inverted back and forth at random in the presence of FimB recombinase, is the part we need in order to enable the prisoner <i>coli</i> to make the option between cooperation and defection (Fig. 3-4-1-1).</p>
Pcon_rhlR_TT_Plux_CmR (pSB6A1) cell is an engineered <i>E. coli</i> that contains C4HSL-dependent chloramphenicol resistance gene product (CmR) generator and a constitutive RhlR generator. As a constitutive 3OC12HSL production module, we used Plac_lasI (pSB3K3).<br>&nbsp;&nbsp;&nbsp;For construction of the C4HSL-dependent chloramphenicol resistance gene product (CmR) and 3OC12HSL production module (Plac_lasI), we constructed an improved parts Pcon_rhlR_TT_Plux_CmRssrA, <a href="http://parts.igem.org/Part:BBa_K1632023">BBa_K1632023</a>. The C4HSL-dependent growth was confirmed by measuring the optical density.</p>
+
          <table width="940 px" border="0px">
          <table width="940 px" border="0px">
+
      <tr>
          <tr>
+
      <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/e/ee/Tokyo_Tech_fimB_summary.png" width="450px"/>
                <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/0/0c/Tokyo_Tech_c4HSLsummary1.png" width="600px" />
+
      </td>
                </td>
+
      </tr>
                </tr>
+
      <tr>
                <tr>
+
      <td width="940px">
                <td width="940px">
+
      <h4 align="center" class="fig"><strong>Fig.&nbsp;3-4-1-1.</strong>&nbsp;In the presence of FimB recombinase, the <i>fim</i> switch which is a promoter containing repeated DNA sequence, is invert at random. </h4>
                <h4 align="center" class="fig"><strong>Fig. 3-2-1-1.</strong>&nbsp;Matrix of Prisoner <i>coli</i> A</h4>
+
      <td>
                <td>
+
      </tr>
                </tr>
+
      </table>
 +
      <p class="text">To confirm the function of the newly constructed plasmid, P<sub>BAD/<i>araC</i></sub>_<i>fimB</i> (<a href="http://parts.igem.org/Part:BBa_K1632012">BBa_K1632012</a>), we also constructed two new plasmids, <a href"http://parts.igem.org/Part:BBa_K1632007">BBa_K1632007</a> and <a href="http://parts.igem.org/Part:BBa_K1632008">BBa_K1632008</a> (Fig. 3-4-1-2).<a href="http://parts.igem.org/Part:BBa_K1632012">BBa_K1632012</a> enables arabinose-inducible expression of FimB (wild-type). In <a href="http://parts.igem.org/Part:BBa_K1632007">BBa_K1632007</a> and <a href="http://parts.igem.org/Part:BBa_K1632008">BBa_K1632008</a>, either the <i>fim</i> switch [default ON] or the <i>fim</i> switch [default OFF] is placed upstream of the GFP coding sequence. </p>  
 +
          <table width="940 px" border="0px">
 +
      <tr>
 +
      <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/8/8e/Tokyo_Tech_fimB_summary1.png" />
 +
      </td>
 +
      </tr>
 +
      <tr>
 +
      <td width="940px">
 +
      <h4 align="center" class="fig"><strong>Fig.3-4-1-2.</strong>&nbsp;New plasmids we constructed to confirm the function of the <i>fim</i> switch in the presence of FimB</h4>
 +
      <td>
 +
      </tr>
 
       </table>
 
       </table>
          <h2 id="2" class="smalltitle">2. Summary of the Experiment</h2>
 
          <h3 id="21" class="sub5">2.1  C4HSL-dependent CmR expression</h3>
 
          <h3 id="22" class="sub5">2.2  C4HSL-dependent CmR expression</h3>
 
<p></p>
 
<table><tbody><tr><td>画像</td></tr><tr><td><h4 class="fig">Fig.3-2-2-1. C4HSL-dependent CmR expression</h4></td></tr></tbody></table>
 
<p></p>
 
<p class="text">We confirmed the function of C4HSL-dependent CmR expression by measuring optical density of the cultures containing chloramphenicol (Fig. 3-2-2-1).In this experiment we prepared four plasmids, A, B, C, and D (Fig. 3-2-2-2). Right after the C4HSL induction, we added chloramphenicol into the medium containing Prisoner cell. We measured the optical density for about eight hours to estimate the concentration of the cell.</p>
 
<p></p>
 
<table><tbody><tr><td>画像</td></tr><tr><td><h4 class="fig">Fig.3-2-2-2. Plasmids for the experiment of C4HSL-dependent CmR expression</h4></td></tr></tbody></table>
 
<p></p>
 
<h3 id="23" class="sub5">2.3  Adding an ssrA degradation tag</h3>
 
<p class="text">At the first stage of wet experiment, initially designed circuits showed leaky expression of CmR. Although “middle” and “high” growth inhibition is required for implementation of our payoff matrix (Fig. X), cells showed active growth even in the absence of AHL when the cell harboring our initially designed genetic circuit Pcon_rhlR_TT_Plux_CmR in Prisoner coli B (Fig. X). We could not obtain positive results in our modeling by increasing the concentration of Cm, which was one of our solutions. For precise implementation of our payoff matrix, suggestions from modeling allow us successfully improving the former plasmid by adding an ssrA tag right after the CmR gene (Pcon_rhlR_TT_Plux_CmRssrA (BBa_K1632022)) (Fig.3-2-2-3). The ssrA tag helps to degrade the leaked CmR protein. The improved parts were used for construction of BBa_K1632022 circuit for 3OC12HSL inducible expression of CmR. Compared with circuits without ssrA tag BBa_K395160, our improved BBa_K1632022 indeed showed much slower growth which corresponds to “middle” growth inhibition (Fig.3-2-2-1). Furthermore, addition of 3OC12HSL recovers active cell growth which corresponds to “none” growth inhibition (Fig. 2-1). These results show the improved function of AHL-dependent CmR expression by measuring the optical density. (Projectより引用)</p>
 
<p></p>
 
<table><tbody><tr><td>画像</td></tr><tr><td><h4 class="fig">Fig.3-2-2-3. The improved plasmid (BBa_K1632022) we constructed</h4></td></tr></tbody></table>
 
<p></p>
 
<table><tbody><tr><td>画像</td></tr><tr><td><h4 class="fig">Fig.3-2-2-4. Plasmids for the experiment of C4HSL-dependent CmR expression</h4></td></tr></tbody></table>
 
<p></p>
 
<h2 id="23" class="sub5">2.3  Realizing the payoff matrix</h3>
 
<h2 id="231" class="sub6">2.3.1  Seeking the ideal Cm Concentration</h3>
 
<p class="text">Using the improved plasmids we constructed, our <i>E.coli</i> version payoff matrix is replicated through wet lab experiments. However, from the results shown in (Fig. X), the difference between “middle” growth inhibition and “high” growth inhibition was hardly observable. </p>
 
<p class="text">The experiment was conduvted with different Chloramphenicol concentration (50, 75, 100microg/mL). Incubated in a culture medium without AHL, the difference in the growth rate was observed between the one producing AHL and the one not.
 
</p>
 
<p></p>
 
<h2 id="232" class="sub5">2.3.2  Payoff matrix with the new Cm concentraion</h3>
 
<p class="text">We found out that 75microg/mL is a Cm concentration good enough to realize the payoff matrix precisely. Using the new Cm concentration (75microg/mL), the “C12HSL-dependent CmR expression assay” (refer to 5-2-4) was run again to replicate a precise payoff matrix.</p>
 
<p></p>
 
<h3 id="24" class="sub5">2.4  Decreasing the AHL(C4HSL) Concentration </h3>
 
<p></p>
 
  
<h2 id="3" class="smalltitle">3. Results</h2>
 
<h2 id="31" class="sub5">3.1  C4HSL-dependent CmR expression</h2>
 
<p class="text">We tested four types of culture condition which contains different Cm concentration (0 and 100 microg/mL) and different AHL concentration (0 and 5 nM). Fig. 3-2-3-1, Fig. 3-2-3-2, Fig. 3-2-3-3, Fig. 3-2-3-4 show the condition in the absence and presence of Cm, respectively. Regardless of the presence of Cm, every cell grew in the culture medium even without C4HSL.</p>
 
<p class="text" style="margin-left: 30px;"> Cm (+)…Pcon_rhlR_TT_Plux_CmR (6A1) + Plac_lasI (3K3) (8/27, 28)</p>
 
<p></p>
 
<table><tbody><tr><td><img  src="https://static.igem.org/mediawiki/2015/d/d1/Tokyo_Tech_Growth_las3231.png" width="60%"></td></tr><tr><td><h4 class="fig">Fig.3-2-3-1. Cooperating Prisoner <i>coli</i> B’s growth with Cm</h4></td></tr></tbody></table>
 
<p></p>
 
<p class="text" style="margin-left: 30px;"> Cm (+)…Pcon_rhlR_TT_Plux_CmR (6A1) + ⊿P_lasI (3K3) (8/27,28)</p>
 
<p></p>
 
<table><tbody><tr><td><img  src="https://static.igem.org/mediawiki/2015/e/e5/Tokyo_Tech_Growth_las3232.png" width="60%"></td></tr><tr><td><h4 class="fig">Fig.3-2-3-2. Defecting Prisoner coli B’s growth with Cm</h4></td></tr></tbody></table>
 
<p></p>
 
<p class="text">The expression and the function of CmR was confirmed from (Fig3-2-3-1.) and (Fig. 3-2-3-2), since the Prisoner coli have grown (refer the solid magenta line of (Fig3-2-3-1.) and (Fig. 3-2-3-2)) despite the presence of chloramphenicol in the culture. However, the Prisoner coli have also grown in the culture with chloramphenicol without AHL (dotted magenta line), in other words, the prisoner coli have acquired Cm resistance regardless of the presence of C4HSL. From this fact, leakage in the promoter was suspected (assumed) ((Fig3-2-3-1.) & (Fig. 3-2-3-2)).</p>
 
          <h2 id="32" class="sub5">3.2 Plasmids with an ssrA degradation tag</h2>
 
<p class="text">We repeated the experiment (refer to 3.1) using the new plasmid we constructed. From the results of our experiment, we confirmed that the new prisoner coli B (Pcon_rhlR_TT_Plux_CmRssrA) had expressed CmR when induced by C4HSL, as expected (Fig. 3.2.1 and Fig. 3.2.2).</p>
 
<p class="text" style="margin-left: 30px;"> Pcon_rhlR_TT_Plux_CmR (6A1) + Plac_lasI (3K3) (8/27, 28)</p>
 
<p></p>
 
<table><tbody><tr><td><img src="https://static.igem.org/mediawiki/2015/d/de/Tokyo_Tech_Growth_las3233.png" width="60%"></td></tr><tr><td><h4 class="fig">Fig. 3-2-3-3. Cooperating Prisoner coli B’s growth with an ssrA tag</h4></td></tr></tbody></table>
 
<p></p>
 
<p class="text" style="margin-left: 30px;"> Pcon_rhlR_TT_Plux_CmR (6A1) + ⊿P_lasI (3K3) (8/27, 28)</p>
 
<p></p>
 
<table><tbody><tr><td>画像</td></tr><tr><td><h4 class="fig">Fig.3-2-3-4. Defecting Prisoner <i>coli</i> B's growth with an ssrA tag</h4></td></tr></tbody></table>
 
<p></p>
 
<p class="text">Protein with an ssrA tag is said to be easy to be dissolved by ClpXP and ClpAP that E.coli originally have. From (Fig.3-2-3-3) and (Fig.3-2-3-4), Prisoner coli with an ssrA tag were not able to grow without C4HSL. Therefore, we can say that CmR produced by the leak of the Plux promoter was dissolved immediately while an ssrA tag was added to CmR. Adding an ssrA tag can be said a sufficient method to reduce the influence of the leak of Plux promoter.</p>
 
<p class="text"> Comparing the growth in the 3CO12HSL lacking culture medium of the initial prisoner coli and the new prisoner coli with the ssrA tag, in other words the magenta dotted line and the green dotted line of each (Fig. 3-2-1) and (Fig. 3-2-2), showed that the leaky CmR was reduced by adding an ssrA tag. </p>
 
<p></p>
 
<h2 id="33" class="sub5">3.3 Realizing the payoff matrix</h2>
 
<h2 id="331" class="sub6">3.3.1 Seeking the ideal Cm concentration</h2>
 
<p class="text">We ran the experiment with different Chloramphenicol concentration (50, 75, 100 microg/mL).The following three results are the OD of cooperating Prisoner B (Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1) + Plac_lasI (pSB3K3)) and defecting Prisoner B (Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1) +⊿P_lasI (pSB3K3)) grown in the culture medium without C4HSL. The growth inhibition degree of each stand for “high” and “middle” growth inhibition.</p>
 
<p></p>
 
<table><tbody><tr><td>画像</td></tr><tr><td><h4 class="fig">Fig.3-2-3-5  </h4></td></tr></tbody></table>
 
<p></p>
 
<p class="text">We tried to make the growth inhibition rate of chloramphenicol larger than the metabolic burden of producing 3OC12HSL. But at the same time, making the difference between “middle” and “high” growth inhibition, in other words, replicating a precise pay off matrix, is also our goal. From the experimental results, 75 microg/mL was determined to be a Cm concentration good enough to realize the precise payoff matrix, while the green lines and the orange lines in (Fig. 3-2-3-5) were able to distinguish.</p>
 
<p></p>
 
<h2 id="332" class="sub6">3.3.2  Payoff matrix with the new Cm Concentration</h2>
 
<p class="text">We ran the “C4HSL-dependent CmR expression assay” with the new Chloramphenicol concentration (75 microg/mL). The results are the following.</p>
 
<p></p>
 
<table><tbody><tr><td>画像</td></tr><tr><td>Fig.3-2-3-6 </td></tr></tbody></table>
 
<p></p>
 
<p class="text">With the new Chloramphenicol Concentration, the payoff matrix was replicated precisely. The orange line is when you cooperate, and the green is when you defect. The solid line is when your opponent cooperates, and the dotted is when your opponent defects.</p>
 
<p></p>
 
<h3 id="34" class="sub5">3.4  Decreasing the AHL(C4HSL) Concentration </h3>
 
  
              <h2 id="4" class="sub4">4. Discussion</h2>
+
          <h2 id="Summary" class="smalltitle">2. Summary of the Experiment</h2>
<h2 id="41" class="sub5">4.1 The function of the ssrA tag</h2>
+
      <p class="text">Our purpose is to confirm that FimB inverts fimswitch from ON to OFF and OFF to ON (図の番号). Taking endogenous FimB and FimE into account, we prepared six plasmids sets shown in below(図の番号). We measured the fluorescence intensity by GFP expression when we added arabinose. また、我々はFimSが本当に反転しているかどうかを確認するために、FLAを使った解析とシークエンスデータの解析を行った。</p>
<p></p>
+
    <table width="940 px" border="0px">
              <h2 class="sub5">4.</h2>
+
      <tr>
<p></p>
+
      <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/d/dd/Tokyo_Tech_arabinosefimB.png" width="800px" />
<h2 id="5" class="smalltitle">
+
      </td>
           
+
      </tr>
1. コピペ。<br>
+
      <tr>
2. コピペ。<br>
+
      <td width="940px">
3. コピペ。<br>  
+
      <h4 align="center" class="fig"><strong>Fig.3-4-2-1.</strong>&nbsp;Plasmids for the experiment of FimB dependent fim switch state assay</h4>
4. コピペ。<br>
+
      <td>
5. コピペ。<br>
+
      </tr>
6. コピペ。<br>
+
      </table>
7. コピペ。<br>
+
 
8. コピペ。<br>
+
 
9. コピペ。<br>
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
          <h2 id="Results" class="smalltitle">3. Results</h2>
 +
              <h3 id="Result1" class="sub5">3.1. Arabinose dependent FimE expression</h3>
 +
          <p class="text2">私たちは、4種類のarabinose濃度でFimBが働くかどうかを、GFPを用いたレポーターアッセイによって確かめた。
 +
 Figure(図番号) は、default ONのサンプルが、arabinose誘導によって、OFF状態に切り替わった結果を示している。
 +
またFigure(図番号)は、default OFFのサンプルが、arabinose誘導によって、ON状態に切り替わった結果を示している。
 +
Figure(図番号) shows our experimental results of FimB and Fimswitch. From the results of the reporter cell C and D, inversion from ON to OFF and OFF to ON by endogenous proteins are negligible. レポーターセルE,Fの結果から、FImEの発現はヒストグラムの波形にほとんど影響を与えないことがわかる。
 +
以上の2つの結果から、FimBが理想的に両反転を起こしていることがわかる。
 +
</p>
 +
                <table width="940 px" border="0px">
 +
                  <tr>
 +
                  <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/1/1a/Tokyo_Tech_arabinose_fimB_result1.png" width="800px"/>
 +
      </td>
 +
      </tr>
 +
      <tr>
 +
      <td width="980px">
 +
      <h4 align="center" class="fig"><strong>Fig. 3-4-3-1.</strong></h4>
 +
      <td>
 +
      </tr>
 +
      </table>
 +
              <h3 id="Result2" class="sub5">3.2. FLA analysis</h3>
 +
          <p class="text2">写真とシークエンスデータ</p>
 +
          <h2 id="Discussion" class="smalltitle">4. Discussion</h2>
 +
          <p class="text">When FimB concentration increased by increasing arabinose concentration, we confirmed that Fluorescence intensity was decreased in both of ON to OFF and OFF to ON.<br>
 +
&nbsp;&nbsp;According to [1], increasing switching frequency by increasing FimB expression decrease mean expression because it is enough time for FimB to bind to the inversion sequences and disrupt transcription initiation or elongation.<br>
 +
&nbsp;&nbsp;Similar increase dependent on FimB expression was found in control samples(図).  Because FimE expression decreases cell growth rate, decreased dilution rate of proteins including GFP from leaky expression in the cells could slightly increase of fluorescence in a cell.
 +
</p>
 +
          <h2 id="Materials" class="smalltitle">5. Materials and Methods</h2>
 +
              <h3 id="Const" class="sub5">5.1.  Construction</h3>
 +
              <h3 class="sub5">-Strain</h3>
 +
 
 +
          <p class="text2">All the samples were DH5alpha strain.</p>
 +
              <h3 class="sub5">-Plasmids</h3>
 +
          <p class="text2">A. P<sub>BAD/<i>araC</i></sub>_<i>fimB</i>(pSB6A1)+ <i>fim</i> switch[default ON](wild-type)_<i>gfp</i> (pSB3K3)</p>
 +
                <table width="980 px" border="0px">
 +
                  <tr>
 +
                  <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/e/e1/Tokyo_Tech_PBAD_fimB_fimswitchon_gfp.png"/>
 +
      </td>
 +
      </tr>
 +
      <tr>
 +
      <td width="980px">
 +
      <h4 align="center" class="fig"><strong>Fig. 3-4-5-1.</strong></h4>
 +
      <td>
 +
      </tr>
 +
      </table>
 +
          <p class="text2">B. P<sub>BAD/<i>araC</i></sub>_<i>fimB</i>(pSB6A1)+ <i>fim</i> switch[default OFF](wild-type)_<i>gfp</i> (pSB3K3)
 +
                <table width="980 px" border="0px">
 +
                  <tr>
 +
                  <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/4/47/Tokyo_Tech_PBAD_fimB_fimswitchoff_gfp.png"/>
 +
      </td>
 +
      </tr>
 +
      <tr>
 +
      <td width="980px">
 +
      <h4 align="center" class="fig"><strong>Fig. 3-4-5-2.</strong></h4>
 +
      <td>
 +
      </tr>
 +
      </table>
 +
          <p class="text2">C. Posigive control1:(pSB6A1)+ <i>fim</i> switch[default ON](wild-type)_<i>gfp</i>(pSB3K3)</p>
 +
                <table width="980 px" border="0px">
 +
                  <tr>
 +
                  <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/0/07/Tokyo_Tech_cysE_fimswitchon.png"/>
 +
      </td>
 +
      </tr>
 +
      <tr>
 +
      <td width="980px">
 +
      <h4 align="center" class="fig"><strong>Fig. 3-4-5-3.</strong></h4>
 +
      <td>
 +
      </tr>
 +
      </table>
 +
          <p class="text2">D. Negative control2: (pSB6A1)+ <i>fim</i> switch[default OFF](wild-type)_<i>gfp</i>(pSB3K3)</p>
 +
                <table width="980 px" border="0px">
 +
                  <tr>
 +
                  <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/8/89/Tokyo_Tech_cysE_fimswitchoff.png"/>
 +
      </td>
 +
      </tr>
 +
      <tr>
 +
      <td width="980px">
 +
      <h4 align="center" class="fig"><strong>Fig. 3-4-5-4.</strong></h4>
 +
      <td>
 +
      </tr>
 +
      </table>
 +
          <p class="text2">E. Pbad/araC-<i>fimB</i> (pSB6A1) +J23119 promoter_<i>gfp</i> (pSB3K3)…Positive control2</p>
 +
                <table width="980 px" border="0px">
 +
                  <tr>
 +
                  <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/7/79/Tokyo_Tech_PBAD_fimB_J23119_gfp.png"/>
 +
      </td>
 +
      </tr>
 +
      <tr>
 +
      <td width="980px">
 +
      <h4 align="center" class="fig"><strong>Fig. 3-4-5-5.</strong></h4>
 +
      <td>
 +
      </tr>
 +
      </table>
 +
          <p class="text2">F. Pbad/araC-<i>fimB</i> (pSB6A1) +promoter less <i>gfp</i> (pSB3K3)…Negative control2</p>
 +
                <table width="980 px" border="0px">
 +
                  <tr>
 +
                  <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/4/42/Tokyo_Tech_PBAD_fimB_gfp.png"/>
 +
      </td>
 +
      </tr>
 +
      <tr>
 +
      <td width="980px">
 +
      <h4 align="center" class="fig"><strong>Fig. 3-4-5-6.</strong></h4>
 +
      <td>
 +
      </tr>
 +
      </table>
 +
              <h3 id="Protocol" class="sub5">5.2. Assay Protocol</h3>
 +
              <h3 id="Protol1" class="sub6">5.2.1. Arabinose dependent FimB expression</h3>
 +
                <p class="text2"></p>
 +
                  <p class="text3"></p>
 
                     <p class="text4">
 
                     <p class="text4">
           <h2 id="Reference" class="smalltitle">6.. Reference</h2>
+
1. Prepare overnight cultures for the each sample in 3 mL of LB medium containing ampicillin (50 microg / mL), kanamycin (30 microg / mL) and glucose (final concentration of mass of glucose is 0.5 percent) at 37 ℃ for 12h.<br>
      <p class="text">1. Bo Hu <em>et al.</em> (2010) An Environment-Sensitive Synthetic Microbial Ecosystem. PLoS ONE 5(5): e10619<p><br><br><br>
+
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp, Kan and glucose (final concentration of mass of glucose is 0.5 percent).<br>
 +
3. Grow the cells at 37 ℃ until the observed OD590 reaches 0.4 (Fresh Culture)<br>
 +
4. After incubation, take 1 mL of the samples, and centrifuge at 5000x g, 1 min, 25 ℃.<br>
 +
5. Remove the supernatant by using P1000 pipette.<br>
 +
6. Suspend the pellet in 1 mL of LB containing Amp and Kan, and centrifuge at 5000x g, 1 min, 25 ℃ <br>
 +
7. Remove the supernatant by using P1000 pipette.<br>
 +
8. Take the samples, and centrifuge at 5000x g, 1 min, 25 ℃.<br>
 +
9. Remove the supernatant by using P1000 pipette.<br>
 +
10. Add 1 mL of LB containing Amp and Kan, and suspend.<br>
 +
11. Add 30 microL of suspension in the following medium.<br>
 +
&nbsp;&nbsp;&nbsp;① 3 mL of LB containing Amp, Kan, glucose (final concentration of mass of glucose is 0.5 percent) and 30 microL of sterile water.<br>
 +
&nbsp;&nbsp;&nbsp;② 3 mL of LB containing Amp, Kan and 30 microL of 2 mM arabinose (final concentration of arabinose is 20 microM)<br>
 +
&nbsp;&nbsp;&nbsp;③ 3 mL of LB containing Amp, Kan and 30 microL of 20 mM arabinose (final concentration of arabinose is 200 microM)<br>
 +
&nbsp;&nbsp;&nbsp;④ 3 mL of LB containing Amp, Kan and 30 microL of 500 mM arabinose (final concentration of arabinose is 5 mM)<br>
 +
&nbsp;&nbsp;&nbsp;※ As for C and D, the suspension were added only in medium ① and ④. <br>
 +
12. Grow the samples at 37 ℃ for 6.5 hours.<br>
 +
13. Measure OD590 of all the samples every hour.<br>
 +
14. Start preparing the flow cytometer 1 h before the end of incubation.<br>
 +
15. After the incubation, take the samples, and centrifuge at 9000x g, 1min, 4℃.<br>
 +
16. Remove the supernatant by using P1000 pipette.<br>
 +
17. Add 1 mL of filtered PBS (phosphate-buffered saline) and suspend. (The ideal of OD is 0.3)<br>
 +
18. Dispense all of each suspension into a disposable tube through a cell strainer.<br>
 +
19. Use flow cytometer to measure the fluorescence of GFP. (We used BD FACSCaliburTM Flow Cytometer of Becton, Dickenson and Company.)<br>
 +
              <h3 id="Protol2" class="sub6">5.2.2. FLA analysis</h3>
 +
                <p class="text2"></p>
 +
                  <p class="text3"></p>
 +
                    <p class="text4">
 +
 
 +
1. After the assay of “Arabinose dependent FimE expression”, miniprep cell culture (A,B,
 +
,C and D) of leftover as here.(http://parts.igem.org/Help:Protocols/Miniprep) <br>
 +
2. Turn on water bath to 42℃.<br>
 +
3. Take competent DH5alpha strain from -80℃ freezer and leave at rest on ice.<br>
 +
4. Add 3 µl of each plasmids in a 1.5 ml tube.<br>
 +
5. Put 25 µl competent cell into each 1.5 ml tubes with plasmid.<br>
 +
6. Incubate on ice for 15 min.<br>
 +
7. Put tubes with DNA and competent cells into water bath at 42℃ for 30 seconds.<br>
 +
8. Put tubes back on ice for 2 minutes.<br>
 +
9. Add 125 µl of SOC medium. Incubate tubes for 30 minutes at 37℃.<br>
 +
10. Make a 1:5 dilution in 150µl of fresh SOC medium.<br>
 +
11. Spread about 100 µl of the resulting culture of LB plate containing kanamycin.<br>
 +
12. Incubate LB plate for 14-15 hours at 37℃. <br></p>
 +
 
 +
                 
 +
           <h2 id="Reference" class="smalltitle">6. Reference</h2>
 +
      <p class="text">1. Bo Hu <em>et al.</em> (2010) An Environment-Sensitive Synthetic Microbial Ecosystem. PLoS ONE 5(5): e10619</p>
 
     </div>
 
     </div>
 
    <div class="textbottom">
 
    <div class="textbottom">

Revision as of 05:22, 17 September 2015

FimB dependent fim switch state_assay

We have characterized previous parts.

  
  

1. Introduction

      

We decided that the fim switch, which the promoter containing repeated DNA sequence can be inverted back and forth at random in the presence of FimB recombinase, is the part we need in order to enable the prisoner coli to make the option between cooperation and defection (Fig. 3-4-1-1).

      

Fig. 3-4-1-1. In the presence of FimB recombinase, the fim switch which is a promoter containing repeated DNA sequence, is invert at random.

      

To confirm the function of the newly constructed plasmid, PBAD/araC_fimB (BBa_K1632012), we also constructed two new plasmids, BBa_K1632007 and BBa_K1632008 (Fig. 3-4-1-2).BBa_K1632012 enables arabinose-inducible expression of FimB (wild-type). In BBa_K1632007 and BBa_K1632008, either the fim switch [default ON] or the fim switch [default OFF] is placed upstream of the GFP coding sequence.

      

Fig.3-4-1-2. New plasmids we constructed to confirm the function of the fim switch in the presence of FimB

2. Summary of the Experiment

      

Our purpose is to confirm that FimB inverts fimswitch from ON to OFF and OFF to ON (図の番号). Taking endogenous FimB and FimE into account, we prepared six plasmids sets shown in below(図の番号). We measured the fluorescence intensity by GFP expression when we added arabinose. また、我々はFimSが本当に反転しているかどうかを確認するために、FLAを使った解析とシークエンスデータの解析を行った。

Fig.3-4-2-1. Plasmids for the experiment of FimB dependent fim switch state assay

3. Results

3.1. Arabinose dependent FimE expression

      

私たちは、4種類のarabinose濃度でFimBが働くかどうかを、GFPを用いたレポーターアッセイによって確かめた。  Figure(図番号) は、default ONのサンプルが、arabinose誘導によって、OFF状態に切り替わった結果を示している。 またFigure(図番号)は、default OFFのサンプルが、arabinose誘導によって、ON状態に切り替わった結果を示している。 Figure(図番号) shows our experimental results of FimB and Fimswitch. From the results of the reporter cell C and D, inversion from ON to OFF and OFF to ON by endogenous proteins are negligible. レポーターセルE,Fの結果から、FImEの発現はヒストグラムの波形にほとんど影響を与えないことがわかる。 以上の2つの結果から、FimBが理想的に両反転を起こしていることがわかる。

Fig. 3-4-3-1.

3.2. FLA analysis

      

写真とシークエンスデータ

4. Discussion

      

When FimB concentration increased by increasing arabinose concentration, we confirmed that Fluorescence intensity was decreased in both of ON to OFF and OFF to ON.
  According to [1], increasing switching frequency by increasing FimB expression decrease mean expression because it is enough time for FimB to bind to the inversion sequences and disrupt transcription initiation or elongation.
  Similar increase dependent on FimB expression was found in control samples(図). Because FimE expression decreases cell growth rate, decreased dilution rate of proteins including GFP from leaky expression in the cells could slightly increase of fluorescence in a cell.

5. Materials and Methods

5.1. Construction

-Strain

      

All the samples were DH5alpha strain.

-Plasmids

      

A. PBAD/araC_fimB(pSB6A1)+ fim switch[default ON](wild-type)_gfp (pSB3K3)

Fig. 3-4-5-1.

      

B. PBAD/araC_fimB(pSB6A1)+ fim switch[default OFF](wild-type)_gfp (pSB3K3)

Fig. 3-4-5-2.

      

C. Posigive control1:(pSB6A1)+ fim switch[default ON](wild-type)_gfp(pSB3K3)

Fig. 3-4-5-3.

      

D. Negative control2: (pSB6A1)+ fim switch[default OFF](wild-type)_gfp(pSB3K3)

Fig. 3-4-5-4.

      

E. Pbad/araC-fimB (pSB6A1) +J23119 promoter_gfp (pSB3K3)…Positive control2

Fig. 3-4-5-5.

      

F. Pbad/araC-fimB (pSB6A1) +promoter less gfp (pSB3K3)…Negative control2

Fig. 3-4-5-6.

5.2. Assay Protocol

5.2.1. Arabinose dependent FimB expression

1. Prepare overnight cultures for the each sample in 3 mL of LB medium containing ampicillin (50 microg / mL), kanamycin (30 microg / mL) and glucose (final concentration of mass of glucose is 0.5 percent) at 37 ℃ for 12h.
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp, Kan and glucose (final concentration of mass of glucose is 0.5 percent).
3. Grow the cells at 37 ℃ until the observed OD590 reaches 0.4 (Fresh Culture)
4. After incubation, take 1 mL of the samples, and centrifuge at 5000x g, 1 min, 25 ℃.
5. Remove the supernatant by using P1000 pipette.
6. Suspend the pellet in 1 mL of LB containing Amp and Kan, and centrifuge at 5000x g, 1 min, 25 ℃
7. Remove the supernatant by using P1000 pipette.
8. Take the samples, and centrifuge at 5000x g, 1 min, 25 ℃.
9. Remove the supernatant by using P1000 pipette.
10. Add 1 mL of LB containing Amp and Kan, and suspend.
11. Add 30 microL of suspension in the following medium.
   ① 3 mL of LB containing Amp, Kan, glucose (final concentration of mass of glucose is 0.5 percent) and 30 microL of sterile water.
   ② 3 mL of LB containing Amp, Kan and 30 microL of 2 mM arabinose (final concentration of arabinose is 20 microM)
   ③ 3 mL of LB containing Amp, Kan and 30 microL of 20 mM arabinose (final concentration of arabinose is 200 microM)
   ④ 3 mL of LB containing Amp, Kan and 30 microL of 500 mM arabinose (final concentration of arabinose is 5 mM)
   ※ As for C and D, the suspension were added only in medium ① and ④.
12. Grow the samples at 37 ℃ for 6.5 hours.
13. Measure OD590 of all the samples every hour.
14. Start preparing the flow cytometer 1 h before the end of incubation.
15. After the incubation, take the samples, and centrifuge at 9000x g, 1min, 4℃.
16. Remove the supernatant by using P1000 pipette.
17. Add 1 mL of filtered PBS (phosphate-buffered saline) and suspend. (The ideal of OD is 0.3)
18. Dispense all of each suspension into a disposable tube through a cell strainer.
19. Use flow cytometer to measure the fluorescence of GFP. (We used BD FACSCaliburTM Flow Cytometer of Becton, Dickenson and Company.)

5.2.2. FLA analysis

1. After the assay of “Arabinose dependent FimE expression”, miniprep cell culture (A,B, ,C and D) of leftover as here.(http://parts.igem.org/Help:Protocols/Miniprep)
2. Turn on water bath to 42℃.
3. Take competent DH5alpha strain from -80℃ freezer and leave at rest on ice.
4. Add 3 µl of each plasmids in a 1.5 ml tube.
5. Put 25 µl competent cell into each 1.5 ml tubes with plasmid.
6. Incubate on ice for 15 min.
7. Put tubes with DNA and competent cells into water bath at 42℃ for 30 seconds.
8. Put tubes back on ice for 2 minutes.
9. Add 125 µl of SOC medium. Incubate tubes for 30 minutes at 37℃.
10. Make a 1:5 dilution in 150µl of fresh SOC medium.
11. Spread about 100 µl of the resulting culture of LB plate containing kanamycin.
12. Incubate LB plate for 14-15 hours at 37℃.

6. Reference

      

1. Bo Hu et al. (2010) An Environment-Sensitive Synthetic Microbial Ecosystem. PLoS ONE 5(5): e10619