Difference between revisions of "Team:ETH Zurich/Modeling/Single-cell Model"

Line 79: Line 79:
 
<h2> Combined Compartment Model </h2>
 
<h2> Combined Compartment Model </h2>
 
<h3> Overview</h3>  
 
<h3> Overview</h3>  
<p> In this model we plan to simulate whether our system can work as an AND-GATE. Therefore we simulated the system using compartment to model the density of the <i> E. coli </i> as already explained in the <a href="https://2015.igem.org/Team:ETH_Zurich/Modeling/AHL_Module#Compartment_Model">AHL module</a>. </p>
+
<p> In this model we plan to simulate whether our system can work as an AND-GATE. We will compare the output if we use the simple lactate detection system or the fold-change sensor. </p>
<p> First, we will simulate the model with no amplification of the lactate input to match our experimental results. In a second part, we will simulate the full model.  
+
As <a href="https://2015.igem.org/Team:ETH_Zurich/Modeling/AHL_Module#Simulation">already done</a> in the AHL module, we will compare three conditions:</p>
+
<ol type="A">
+
<li>No degradation by AiiA, no riboregulator.</li>
+
<li>Degradation of AHL by AiiA.</li>
+
<li>Riboregulator controlling LuxI expression.</li>
+
</ol>
+
 
<h3> Results</h3>  
 
<h3> Results</h3>  
 
<p> These equations are the integration of both modules in one compartment model. <p>
 
<p> These equations are the integration of both modules in one compartment model. <p>
 
<h4> Assumptions</h4>  
 
<h4> Assumptions</h4>  
<p> Here we will assume that .</p>
+
<p> We assume:</p>
 +
<ol>
 +
<li> Instant diffusion in the compartments.  </li>
 +
</ol>
 
<h4> Equations</h4>  
 
<h4> Equations</h4>  
 
+
<p> The equations are the combination of the compartment model of the AHL module and the lactate module. </p>
 +
<h4> Simulation</h4>
 +
<p> Below you will find one example of an ideal situation. </p>
 +
<div class="imgBox">
 +
<a href="https://2015.igem.org/File:FoldChangeBehavior-AndGATE.png">
 +
<img width="100%" src="https://static.igem.org/mediawiki/2015/0/0a/FoldChangeBehavior-AndGATE.png">
 +
</a>
 +
<p>Simulation of the full system</p>
 +
</div>
 
</div>
 
</div>
  

Revision as of 21:19, 17 September 2015

"What I cannot create I do not understand."
- Richard Feynmann

Compartment Model

Introduction

Logic of an AND-gate

In our system we want to reduce the amount the amount of false positives . That’s why cells displaying intermediary characteristics should not be detected by our system. We consider that cells showing increased lactate production rate but do not expose phosphatidylserine, or cells exposing phosphatidylserine but not an increased lactate production rate should not be recognized by our system. We implemented the system to obtain an AND GATE . The system works as two sequential filtering step. The sequential design was used in order to limit the self-activation of the quorum sensing module . Indeed as we have seen in the AHL module, the difference between the two modules strongly depends on the amount of LuxR in the E. coli . This design has a disadvantage though, it requires fine-tuning in order to avoid that one signal prevails on the second one. In the scheme displayed below, we describe in which situation, the E. coli should display fluorescence.

One particularity of our system is that even healthy cells will produce lactate. That is why we implemented a lactate module that works as a fold-change sensor. The fold change sensor will produce a pulse of LuxR. We will study here how the pulsed response influence the output of the system.

Description of the AND-GATE

Genetic design

In this section, we describe the behaviour of the combined model.

Combined Compartment Model

Overview

In this model we plan to simulate whether our system can work as an AND-GATE. We will compare the output if we use the simple lactate detection system or the fold-change sensor.

Results

These equations are the integration of both modules in one compartment model.

Assumptions

We assume:

  1. Instant diffusion in the compartments.

Equations

The equations are the combination of the compartment model of the AHL module and the lactate module.

Simulation

Below you will find one example of an ideal situation.

Simulation of the full system

Single cell model

Overview

The single cell model is provided here to simulate the combined model.

Chemical species

Name Description
AHL Signaling protein, Acyl homoserine lactone (30C6-HSL)
LuxR Regulator protein, that can bind to AHL to form a complex
LuxRAHL Complex of LuxR and AHL, activates transcription of LuxI
LuxI Autoinducer synthase
Aiia AHL-lactonase, N-Acyl Homoserine Lactone Lactonase
Lact Lactate
LacI Lac operon repressor, DNA-binding protein, acts as a protein
IPTG Isopropyl β-D-1-thiogalactopyranoside, prevents LacI from repressing the gene of interest
IL Dimer formed between LacI and IPTG

Reactions

\begin{align*} &\mathop{\xrightarrow{\hspace{4em}}}_{a_{LacI},K_{A,appLact}}^{\displaystyle\mathop{\downarrow}^{\text{Lact}}} \text{LacI}\\ \text{IPTG} + \text{LacI} &\mathop{\mathop{\xrightarrow{\hspace{4em}}}^{\xleftarrow{\hspace{4em}}}}_{k_{\mathrm{IL}}}^{k_{\mathrm{-IL}}} \text{IL}\\ &\mathop{\xrightarrow{\hspace{4em}}}_{a_{LuxR},K_{A,appLact}}^{\displaystyle\mathop{\downarrow}^{\text{Lact}}} \text{LuxR}\\ &\mathop{\xrightarrow{\hspace{4em}}}_{a_{LuxR},K_{R,LacI}}^{\displaystyle\mathop{\bot}^{\text{LacI}}} \text{LuxR}\\ \text{AHL} + \text{LuxR} &\mathop{\mathop{\xrightarrow{\hspace{4em}}}^{\xleftarrow{\hspace{4em}}}}_{k_{\mathrm{LuxRAHL}}}^{k_{\mathrm{-LuxRAHL}}} \text{LuxRAHL}\\ &\mathop{\xrightarrow{\hspace{4em}}}_{a_\mathrm{LuxI},K_{\mathrm{a,LuxRAHL}}}^{\displaystyle\mathop{\downarrow}^{\text{LuxRAHL}}} \text{LuxI}\\ &\mathop{\xrightarrow{\hspace{4em}}}_{a_\mathrm{GFP},K_{\mathrm{a,LuxRAHL}}}^{\displaystyle\mathop{\downarrow}^{\text{LuxRAHL}}} \text{GFP}\\ \end{align*} \begin{align*} \text{LuxI}&\mathop{\xrightarrow{\hspace{4em}}}^{a_{\mathrm{AHL}}}\text{AHL}+\text{LuxI}\\ \text{LuxR}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{LuxR}}}\varnothing\\ \text{AHL}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{AHL}}}\varnothing\\ \text{LuxRAHL}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{LuxRAHL}}}\varnothing\\ \text{LuxI}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{LuxI}}}\varnothing\\ \text{Aiia}+\text{AHL}&\mathop{\xrightarrow{\hspace{4em}}}^{K_{\mathrm{M}},v_{\mathrm{Aiia}}}\text{Aiia}\\ \end{align*}

Equations

Combining all of the equations from the two different modules, it yields the following system:

\begin{align*} \frac{d[LacI]}{dt}&=\frac{a_\mathrm{LacI} \cdot (\frac{[Lact]}{K_\mathrm{A,appLact}})^{n_1}}{1+(\frac{[Lact]}{K_\mathrm{A,appLact}})^{n_1}}-d_{\mathrm{LacI}}[LacI]\\ \frac{d[LuxR]}{dt}&=\frac{a_\mathrm{LuxR} \cdot (\frac{[Lact]}{K_\mathrm{A,appLact}})^{n_1}}{1+(\frac{[Lact]}{K_\mathrm{A,appLact}})^{n_1}} \cdot \frac{1}{1+(\frac{[LacI]}{K_{\mathrm{R,LacI}}\cdot (\gamma_2+1)})^{n_\mathrm{2}}}-d_{\mathrm{LuxR}}[LuxR]\\ [LuxRAHL]&= \frac{[AHL]\cdot [LuxR]}{K_{\mathrm{d,LuxRAHL}}+[AHL]}\\ \frac{d[LuxI]}{dt}&=a_{\mathrm{LuxI}}k_{\mathrm{leaky}}([LuxR]-[LuxRAHL])+\frac{a_{\mathrm{LuxI}}(\frac{[LuxRAHL]}{K_{\mathrm{A,LuxRAHL}}})^2}{1+(\frac{[LuxRAHL]}{K_{\mathrm{A,LuxRAHL}}})^2}-d_{\mathrm{LuxI}}[LuxI]\\ \frac{d[AHL]}{dt}&=a_{\mathrm{AHL}}[LuxI]-d_{\mathrm{AHL}}[AHL]-\frac{v_\mathrm{Aiia}\cdot [AHL]}{K_{\mathrm{M,AiiA}}+[AHL]}\\ \frac{d[GFP]}{dt}&=a_\mathrm{GFP}k_{\mathrm{leaky}}([LuxR]-[LuxRAHL])+\frac{a_\mathrm{GFP}(\frac{[LuxRAHL]}{K_{\mathrm{A,LuxRAHL}}})^2}{1+(\frac{[LuxRAHL]}{K_{\mathrm{A,LuxRAHL}}})^2}-d_{\mathrm{GFP}}[GFP]\\ K_\mathrm{d,LuxRAHL} &= \frac{k_\mathrm{-LuxRAHL}}{k_\mathrm{LuxRAHL}}\\ \gamma_2 &= \frac{IPTG_{tot}}{K_{IL}} \end{align*}

We would like to thank our sponsors