Difference between revisions of "Team:Marburg/Minicells"

Line 407: Line 407:
 
<div style="position:relative;display:inline-block;padding:15px;background:#F8F8F8;border-style:solid;border-color:#FF8F45;border-width:2px;border-radius:10px;text-align:justify;font-size:13pt;line-height:150%;margin:10px;margin-bottom:30px;">
 
<div style="position:relative;display:inline-block;padding:15px;background:#F8F8F8;border-style:solid;border-color:#FF8F45;border-width:2px;border-radius:10px;text-align:justify;font-size:13pt;line-height:150%;margin:10px;margin-bottom:30px;">
 
<h1 >Background</h1>
 
<h1 >Background</h1>
<p>Bacterial minicells are produced by asymmetric cell division, which is caused by a knock out of the minCDE-system. Naturally, this system regulates symmetric cell division.[1] The Min-proteins bind to the cell poles and oscillate between them. MinC functions as inhibitor for FtsZ, which forms the Z-ring and ultimately initiates division of the cell. This symmetric division ensures that each cell gets a copy of the chromosome and all other cell components and thus, is able to live on its own. If this system is disturbed, cell division occurs randomly leading to the formation of minicells.
+
<p>Bacterial minicells are produced by asymmetric cell division, which is caused by a knock out of the minCDE-system. Naturally, this system regulates symmetric cell division.<sup>[1]</sup> The Min-proteins bind to the cell poles and oscillate between them. MinC functions as inhibitor for FtsZ, which forms the Z-ring and ultimately initiates division of the cell. This symmetric division ensures that each cell gets a copy of the chromosome and all other cell components and thus, is able to live on its own. If this system is disturbed, cell division occurs randomly leading to the formation of minicells.
 
<figure style="text-align:center;">
 
<figure style="text-align:center;">
 
<img src="https://static.igem.org/mediawiki/2015/e/e0/MR_pic_minsystem.png" width="400px" alt="minsystem" />
 
<img src="https://static.igem.org/mediawiki/2015/e/e0/MR_pic_minsystem.png" width="400px" alt="minsystem" />
Line 417: Line 417:
 
<figcaption style="margin-top:5px;font-size:11pt;color:#606060;text-align:justify;line-height:110%"><b>Figure X:</b> Normal functional min-system </figcaption>
 
<figcaption style="margin-top:5px;font-size:11pt;color:#606060;text-align:justify;line-height:110%"><b>Figure X:</b> Normal functional min-system </figcaption>
 
</figure>
 
</figure>
 +
Some characteristics of minicells are – as the name suggests – the smaller size compared to their parent cells and the lack of chromosomal DNA. Thus, they are not able of further propagation.<sup>[2]</sup> Apart from that, they contain all other parts of the parent cells.<sup>[1]</sup>
 +
Previous applications of minicells include drug delivery systems for the treatment of tumor cells to avoid inflammatory reactions which occur often when the drug is injected intravenously.<sup>[3]</sup> Also, the usage in vaccines as antigen delivery systems were tested successfully.<sup>[4]</sup> We did not find any evidence for toxicity or unwanted immunoreaction. This led us to the conclusion that the system could be FDA approved in the future.
 +
To prevent infections as far as possible, minicells have to be isolated from their parent cells for these medical applications. Over the last decades, several methods were introduced. Chronologically, the first used technique was density gradient centrifugation.<sup>[2]</sup> Because of limitations in sample sizes and low yields, antibiotic treatments of the minicell-producing strains were performed.<sup>[5]</sup> Many antibiotics, e.g. Penicillin, kill bacteria during cell division, which is why they do not affect minicells. Lately, the treatment with antibiotics was combined with filtration to increase purification efficiency.<sup>[1]</sup> In the future we will include aspects of those techniques in our purification methods to get less “normal” cells, when we are selecting for minicells.
 
</p>
 
</p>
 
</div>
 
</div>

Revision as of 21:43, 17 September 2015

Aim

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua.

Project Design

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua.

Results

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua.

Outlook

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua.

Background

Bacterial minicells are produced by asymmetric cell division, which is caused by a knock out of the minCDE-system. Naturally, this system regulates symmetric cell division.[1] The Min-proteins bind to the cell poles and oscillate between them. MinC functions as inhibitor for FtsZ, which forms the Z-ring and ultimately initiates division of the cell. This symmetric division ensures that each cell gets a copy of the chromosome and all other cell components and thus, is able to live on its own. If this system is disturbed, cell division occurs randomly leading to the formation of minicells.

minsystem
Figure X: Normal functional min-system
As only a MinC knock down is needed to get minicells, we looked for a simple and modular solution. The knock down of gene expression through an small regulartory RNA (sRNA) system was already shown in iGEM by the Team Paris Bettencourt 2013 to was a great success for knock downs of target genes and was based on the Na et al. 2013 publication. The sRNA is processed by the Hfq protein and can then bind to the mRNA where it induces its degradation and stops the protein biosynthesis. Our system was designed according to the guidelines of the paper: a sRNA that binds with 24bp to the MinC mRNA (Figure X).
minsystem
Figure X: Normal functional min-system
Some characteristics of minicells are – as the name suggests – the smaller size compared to their parent cells and the lack of chromosomal DNA. Thus, they are not able of further propagation.[2] Apart from that, they contain all other parts of the parent cells.[1] Previous applications of minicells include drug delivery systems for the treatment of tumor cells to avoid inflammatory reactions which occur often when the drug is injected intravenously.[3] Also, the usage in vaccines as antigen delivery systems were tested successfully.[4] We did not find any evidence for toxicity or unwanted immunoreaction. This led us to the conclusion that the system could be FDA approved in the future. To prevent infections as far as possible, minicells have to be isolated from their parent cells for these medical applications. Over the last decades, several methods were introduced. Chronologically, the first used technique was density gradient centrifugation.[2] Because of limitations in sample sizes and low yields, antibiotic treatments of the minicell-producing strains were performed.[5] Many antibiotics, e.g. Penicillin, kill bacteria during cell division, which is why they do not affect minicells. Lately, the treatment with antibiotics was combined with filtration to increase purification efficiency.[1] In the future we will include aspects of those techniques in our purification methods to get less “normal” cells, when we are selecting for minicells.

iGEM Marburg - ZSM Karl-von-Frisch-Straße 16, D - 35043 Marburg