Difference between revisions of "Team:Hamilton McMaster"

(Prototype team page)
 
 
(40 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
{{Hamilton_McMaster}}
 
{{Hamilton_McMaster}}
 +
 
<html>
 
<html>
<h2> Welcome to iGEM 2015! </h2>
 
<p>Your team has been approved and you are ready to start the iGEM season! </p>
 
  
<h4>Before you start: </h4>
+
<div class = "band">
<p> Please read the following pages:</p>
+
<h2> Abstract </h2>
<ul>
+
<div class = "highlightBox">
<li>  <a href="https://2015.igem.org/Requirements">Requirements page </a> </li>
+
<p>Light-based bacterial protein expression systems have been well documented. Tabor <i>et al.</i> demonstrated a multichromatic protein expression system in E. coli through the combination of the CcaR-CcaS green-light sensitive construct derived from cyanobacteria and a previously characterized red-light sensitive system. This could be leveraged for the expression of multiple genes by exposing the bacteria to different wavelengths of light, i.e. red and green. We propose the application of this construct to recombinant protein expression. Using genetic cloning and recombinant protein techniques, <i>E. coli</i> is concurrently transformed with three plasmids: a chromophore, a red-light sensitive system, and a green-light sensitive system. Protein expression is induced through shining red light on the bacterial population. Following this, cell lysis is triggered by shining green light, which is mediated by a T4 Holin/Endolysin system. This releases the protein of interest into the cell media, allowing for straightforward collection and purification. This system would have important applications in both research and industry, allowing for the optimization and potential automation of heterologous bacterial protein production.</p>
<li> <a href="https://2015.igem.org/Wiki_How-To">Wiki Requirements page</a></li>
+
</div>
</ul>
+
 
+
<div class="highlightBox">
+
<h4> Styling your wiki </h4>
+
<p>You may style this page as you like or you can simply leave the style as it is. You can easily keep the styling and edit the content of these default wiki pages with your project information and completely fulfill the requirement to document your project.</p>
+
<p>While you may not win Best Wiki with this styling, your team is still eligible for all other awards. This default wiki meets the requirements, it improves navigability and ease of use for visitors, and you should not feel it is necessary to style beyond what has been provided.</p>  
+
 
</div>
 
</div>
 
<h4> Editing your wiki </h4>
 
<p>On this page you can document your project, introduce your team members, document your progress and share your iGEM experience with the rest of the world! </p>
 
<p> <a href="https://2015.igem.org/wiki/index.php?title=Team:Hamilton_McMaster&action=edit"> Click here to edit this page! </a></p>
 
<p>See tips on how to edit your wiki on the <a href="https://2015.igem.org/TemplatesforTeams_Code_Documentation">Template Documentation</a> page.</p>
 
 
 
<h4>Templates </h4>
 
<p> This year we have created templates for teams to use freely. More information on how to use and edit the templates can be found on the
 
<a href="https://2015.igem.org/TemplatesforTeams_Code_Documentation">Template Documentation </a> page.</p>
 
 
 
<h4>Tips</h4>
 
<p>This wiki will be your team’s first interaction with the rest of the world, so here are a few tips to help you get started: </p>
 
<ul>
 
<li>State your accomplishments! Tell people what you have achieved from the start. </li>
 
<li>Be clear about what you are doing and how you plan to do this.</li>
 
<li>You have a global audience! Consider the different backgrounds that your users come from.</li>
 
<li>Make sure information is easy to find; nothing should be more than 3 clicks away.  </li>
 
<li>Avoid using very small fonts and low contrast colors; information should be easy to read.  </li>
 
<li>Start documenting your project as early as possible; don’t leave anything to the last minute before the Wiki Freeze. For a complete list of deadlines visit the <a href="https://2015.igem.org/Calendar_of_Events">iGEM 2015 calendar</a> </li>
 
<li>Have lots of fun! </li>
 
</ul>
 
 
 
<h4>Inspiration</h4>
 
<p> You can also view other team wikis for inspiration! Here are some examples:</p>
 
<ul>
 
<li> <a href="https://2014.igem.org/Team:SDU-Denmark/"> 2014 SDU Denmark </a> </li>
 
<li> <a href="https://2014.igem.org/Team:Aalto-Helsinki">2014 Aalto-Helsinki</a> </li>
 
<li> <a href="https://2014.igem.org/Team:LMU-Munich">2014 LMU-Munich</a> </li>
 
<li> <a href="https://2014.igem.org/Team:Michigan"> 2014 Michigan</a></li>
 
<li> <a href="https://2014.igem.org/Team:ITESM-Guadalajara">2014 ITESM-Guadalajara </a></li>
 
<li> <a href="https://2014.igem.org/Team:SCU-China"> 2014 SCU-China </a></li>
 
</ul>
 
 
<h4> Uploading pictures and files </h4>
 
<p> You can upload your pictures and files to the iGEM 2015 server. Remember to keep all your pictures and files within your team's namespace or at least include your team's name in the file name. <br />
 
When you upload, set the "Destination Filename" to <code>Team:YourOfficialTeamName/NameOfFile.jpg</code>. (If you don't do this, someone else might upload a different file with the same "Destination Filename", and your file would be erased!)</p>
 
 
<a href="https://2015.igem.org/Special:Upload">CLICK HERE TO UPLOAD FILES</a>
 
 
 
 
</div></div> <!--These are the closing tags for div id="mainContainer" and div id="contentContainer". The corresponding opening tags appear in the template that is {{included}} at the top of this page.-->
 
 
 
</html>
 
</html>
 +
{{:Template:Hamilton_McMaster_Footer}}

Latest revision as of 02:41, 18 September 2015

Abstract

Light-based bacterial protein expression systems have been well documented. Tabor et al. demonstrated a multichromatic protein expression system in E. coli through the combination of the CcaR-CcaS green-light sensitive construct derived from cyanobacteria and a previously characterized red-light sensitive system. This could be leveraged for the expression of multiple genes by exposing the bacteria to different wavelengths of light, i.e. red and green. We propose the application of this construct to recombinant protein expression. Using genetic cloning and recombinant protein techniques, E. coli is concurrently transformed with three plasmids: a chromophore, a red-light sensitive system, and a green-light sensitive system. Protein expression is induced through shining red light on the bacterial population. Following this, cell lysis is triggered by shining green light, which is mediated by a T4 Holin/Endolysin system. This releases the protein of interest into the cell media, allowing for straightforward collection and purification. This system would have important applications in both research and industry, allowing for the optimization and potential automation of heterologous bacterial protein production.