Difference between revisions of "Team:Hamilton McMaster"

 
(9 intermediate revisions by the same user not shown)
Line 6: Line 6:
 
<h2> Abstract </h2>
 
<h2> Abstract </h2>
 
<div class = "highlightBox">
 
<div class = "highlightBox">
Light-based bacterial protein expression systems have been well documented. Tabor <i>et al.</i> demonstrated a multichromatic protein expression system in E. coli through the combination of the CcaR-CcaS green-light sensitive construct derived from cyanobacteria and a previously characterized red-light sensitive system. This could be leveraged for the expression of multiple genes by exposing the bacteria to different wavelengths of light, i.e. red and green. We propose the application of this construct to recombinant protein expression. Using genetic cloning and recombinant protein techniques, <i>E. coli</i> is concurrently transformed with three plasmids: a chromophore, a red-light sensitive system, and a green-light sensitive system. Protein expression is induced through shining red light on the bacterial population. Following this, cell lysis is triggered by shining green light, which is mediated by a T4 Holin/Endolysin system. This releases the protein of interest into the cell media, allowing for straightforward collection and purification. This system would have important applications in both research and industry, allowing for the optimization and potential automation of heterologous bacterial protein production.
+
<p>Light-based bacterial protein expression systems have been well documented. Tabor <i>et al.</i> demonstrated a multichromatic protein expression system in E. coli through the combination of the CcaR-CcaS green-light sensitive construct derived from cyanobacteria and a previously characterized red-light sensitive system. This could be leveraged for the expression of multiple genes by exposing the bacteria to different wavelengths of light, i.e. red and green. We propose the application of this construct to recombinant protein expression. Using genetic cloning and recombinant protein techniques, <i>E. coli</i> is concurrently transformed with three plasmids: a chromophore, a red-light sensitive system, and a green-light sensitive system. Protein expression is induced through shining red light on the bacterial population. Following this, cell lysis is triggered by shining green light, which is mediated by a T4 Holin/Endolysin system. This releases the protein of interest into the cell media, allowing for straightforward collection and purification. This system would have important applications in both research and industry, allowing for the optimization and potential automation of heterologous bacterial protein production.</p>
 
+
 
</div>
 
</div>
 
</div>
 
</div>
 
</div></div> <!--These are the closing tags for div id="mainContainer" and div id="contentContainer". The corresponding opening tags appear in the template that is {{included}} at the top of this page.-->
 
 
<footer role="contentinfo">
 
<div class="row">
 
<div class="row-content buffer clear-after">
 
<section id="top-footer">
 
<div class="widget meta-social column three">
 
<h4>Follow Us</h4>
 
<ul class="inline">
 
<li><a href="https://twitter.com/iGEM_McMaster" class="twitter-share border-box"><i class="fa fa-twitter fa-lg"></i></a></li>
 
<li><a href="https://www.facebook.com/igemmcmaster" class="facebook-share border-box"><i class="fa fa-facebook fa-lg"></i></a></li>
 
<li><a href="https://instagram.com/igemmcmaster/" class="instagram-share border-box"><i class="fa fa-instagram fa-lg"></i></a></li>
 
<li><a href="https://mcmastergem.com" class="pinterest-share border-box"><i class="fa fa-home fa-lg"></i></a></li>
 
</ul>
 
</div>
 
</section><!-- top-footer -->
 
<section id="bottom-footer">
 
<p class="keep-left">&copy; 2015 mGEM - Designed by <a href="http://kushalpanchal.me" alt="Kushal Panchal">Kushal Panchal</a></p>
 
</section><!-- bottom-footer -->
 
</div><!-- row-content -->
 
</div><!-- row -->
 
</footer>
 
 
</html>
 
</html>
{{Hamilton_McMaster_Footer}}
+
{{:Template:Hamilton_McMaster_Footer}}

Latest revision as of 02:41, 18 September 2015

Abstract

Light-based bacterial protein expression systems have been well documented. Tabor et al. demonstrated a multichromatic protein expression system in E. coli through the combination of the CcaR-CcaS green-light sensitive construct derived from cyanobacteria and a previously characterized red-light sensitive system. This could be leveraged for the expression of multiple genes by exposing the bacteria to different wavelengths of light, i.e. red and green. We propose the application of this construct to recombinant protein expression. Using genetic cloning and recombinant protein techniques, E. coli is concurrently transformed with three plasmids: a chromophore, a red-light sensitive system, and a green-light sensitive system. Protein expression is induced through shining red light on the bacterial population. Following this, cell lysis is triggered by shining green light, which is mediated by a T4 Holin/Endolysin system. This releases the protein of interest into the cell media, allowing for straightforward collection and purification. This system would have important applications in both research and industry, allowing for the optimization and potential automation of heterologous bacterial protein production.