Difference between revisions of "Team:Tokyo Tech/Experiment/C4HSL-dependent growth assay"

(Created page with "{{Team:Tokyo Tech/template2015}} <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <meta name="generator" content="MediaWiki 1.16.5" />...")
 
 
(96 intermediate revisions by 4 users not shown)
Line 14: Line 14:
 
   <body>
 
   <body>
 
     <div id="titlearea">
 
     <div id="titlearea">
       <h1>C4HSL-dependent growth assay</h1>
+
       <h1>C4HSL-dependent CmR expression</h1>
 
     </div>
 
     </div>
 
     <div id="titlebottom">
 
     <div id="titlebottom">
    <h4 class="subtitle"><strong>コメント</strong></h4>
 
 
     </div>
 
     </div>
 
   <div class="texttop">
 
   <div class="texttop">
Line 26: Line 25:
 
       <h3 class="link"><a href="#Introduction">1. Introduction</a></h3>
 
       <h3 class="link"><a href="#Introduction">1. Introduction</a></h3>
 
       <h3 class="link"><a href="#Summary">2. Summary of the Experiment</a></h3>
 
       <h3 class="link"><a href="#Summary">2. Summary of the Experiment</a></h3>
       <h3 class="link"><a href="#Results">3. Results</a></h3>                
+
      <h3 class="link2"><a href="#Summary1">2.1. C4HSL-dependent CmR expression</a></h3>
 +
      <h3 class="link2"><a href="#Summary2">2.2. Insertion of an ssrA degradation tag to CmR</a></h3>
 +
      <h3 class="link2"><a href="#Summary3">2.3. Realizing the payoff matrix</a></h3>
 +
        <h3 class="link3"><a href="#Summary31">2.3.1. Determining the ideal Cm Concentration</a></h3>
 +
        <h3 class="link3"><a href="#Summary32">2.3.2. Payoff matrix with the lower Cm Concentration</a></h3>
 +
       <h3 class="link"><a href="#Results">3. Results</a></h3>
 +
      <h3 class="link2"><a href="#Result1">3.1. Arabinose dependent FimE expression</a></h3>
 +
      <h3 class="link2"><a href="#Result2">3.2. FLA analysis</a></h3>             
 
       <h3 class="link"><a href="#Materials">4. Materials and Methods</a></h3>
 
       <h3 class="link"><a href="#Materials">4. Materials and Methods</a></h3>
 
       <h3 class="link2"><a href="#Const">4.1.  Construction</a></h3>
 
       <h3 class="link2"><a href="#Const">4.1.  Construction</a></h3>
       <h3 class="link2"><a href="#ID">4.2. Instruments and Date</a></h3>
+
       <h3 class="link2"><a href="#Protocol">4.2. Assay Protocol</a></h3>
         <h3 class="link3"><a href="#Inst">4.2.1. Instruments</a></h3>
+
         <h3 class="link3"><a href="#Protol1">4.2.1. C4HSL-dependent CmR expression assay</a></h3>
         <h3 class="link3"><a href="#Date">4.2.2. Date</a></h3>
+
         <h3 class="link3"><a href="#Protol2">4.2.2. C4HSL-dependent CmR expression assay (With an ssrA tag)</a></h3>
      <h3 class="link2"><a href="#Protocol">4.3. Protocol</a></h3>
+
         <h3 class="link3"><a href="#Protol3">4.2.3. Chloramphenicol-dependent Growth Assay with ssrA tag</a></h3>
         <h3 class="link3"><a href="#reader">4.3.1. Plate reader</a></h3>
+
         <h3 class="link3"><a href="#Protol4">4.2.4. C4HSL-dependent CmR expression assay ([Cm] = 75 microg/mL)</a></h3>
         <h3 class="link3"><a href="#meter">4.3.2. Flow cytometer</a></h3>
+
      <h3 class="link2"><a href="#How">4.4. How to process the data</a></h3>
+
        <h3 class="link3"><a href="#Pr">4.4.1. Plate reader</a></h3>
+
        <h3 class="link3"><a href="#Flowcytometer">4.4.2. Flow cytometer</a></h3>
+
      <h3 class="link2"><a href="#Individuals">4.5. Individuals responsible for conducting Interlab study</a></h3>
+
 
       <h3 class="link"><a href="#Reference">5. Reference</a></h3>
 
       <h3 class="link"><a href="#Reference">5. Reference</a></h3>
 
       <br>
 
       <br>
Line 50: Line 51:
 
   <div class="textarea">
 
   <div class="textarea">
 
           <h2 id="Introduction" class="smalltitle">1. Introduction</h2>
 
           <h2 id="Introduction" class="smalltitle">1. Introduction</h2>
      <p class="text">In iGEM 2015, the Interlab Study was held, where we measured the expression level of GFP using three designated devices. It was the first time for our team to join this Interlab Study. In addition to the three designated devices, we also measured the expression level of GFP from a positive control and a negative control using the flow cytometer and the plate reader. Also, for the plate reader, we succeeded in calculating the absolute unit by drawing the calibration curve using sodium fluorescein.</p>
+
      <p class="text"></p>
          <h2 id="Summary" class="smalltitle">2. Summary of the Experiment</h2>
+
           <h2 id="Summary" class="smalltitle">2. Summary of the Experiment</h2>
      <p class="text">Our purpose was to obtain the fluorescence data of the three designated devices and to compare them. We prepared Device1〜Device3, Positive control and Negative control as shown below. We measured the exact same colonies of the exact same samples with both the plate reader and the flow cytometer.</p>
+
              <h3 id="Summary1" class="sub5">2.1. C4HSL-dependent CmR expression</h3>
          <li><p class="list">Device 1: J23101 + I13504(pSB1C3)</p></li>
+
          <table width="940 px" border="0px">
          <li><p class="list">Device 2: J23106 + I13504(pSB1C3)</p></li>
+
          <li><p class="list">Device 3: J23117 + I13504(pSB1C3)</p></li>
+
          <li><p class="list">Positive control: BBa_I20270(pSB1C3)</p></li>
+
          <li><p class="list">Negative control: BBa_R0040(pSB1C3)</p></li><br>
+
    <table width="980 px" border="0px">
+
 
       <tr>
 
       <tr>
       <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/b/b1/Tokyo_tech_Interlab_1.png" />
+
       <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/3/36/Tokyo_Tech_c4HSL_summary2.png" width="600px"/>
 
       </td>
 
       </td>
 
       </tr>
 
       </tr>
 
       <tr>
 
       <tr>
       <td width="980px">
+
       <td width="940px">
       <h4 align="center" class="fig"><strong>Fig.3-7-2-1.</strong>&nbsp;designated devices</h4>
+
       <h4 align="center" class="fig"><strong>Fig.&nbsp;3-1-2-1.</strong>&nbsp;C4HSL-dependent CmR expression</h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
 
       </table>
 
       </table>
 +
                <p class="text2">We confirmed the function of C4HSL-dependent CmR expression by measuring the optical density of the cultures containing chloramphenicol (Cm) (Fig. 3-1-2-1.). In this experiment we prepared four cells which contain different sets of plasmids, (1), (2), (3), and (4) (Fig. 3-1-2-2.).  C4HSL and chloramphenicol was added into the medium containing the cells. The optical density was measured every hour for eight hours to estimate the concentration of the cell. (1), and (2) are the cooperating and defecting prisoner <i>coli</i> A, respectively. (3), and (4) are the negative control for (1), and (2), respectively.</p>
  
          <h2 id="Results" class="smalltitle">3. Results</h2>
+
 
              <h3 id="Plate" class="sub5">3.1. Plate reader</h3>
+
          <table width="940 px" border="0px">
          <p class="text2">First of all, we calibrated our plate reader by confirming the linear relationship between sodium fluorescein concentration and fluorescence (Figure. 3-7-3-1). The way we obtained the calibration curve is descried in the 4. Material and Method section.
+
                </p>
+
                <table width="940 px" border="0px">
+
                <tr>
+
                <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/c/c7/Tokyo_Tech_Interlab_Fig.3-7-3-1.png" />
+
                </td>
+
                </tr>
+
                <tr>
+
                <td width="940px">
+
                <h4 align="center" class="fig"><strong>Fig.3-7-3-1.</strong>&nbsp;Calibration curve</h4>
+
                <td>
+
                </tr>
+
      </table><br><br>
+
          <p class="text2">We measured three colonies(#1〜3) three times (Technical replicate 1〜3) per each sample (Device1〜3, positive control and negative control).<br>
+
&nbsp;&nbsp;Using the calibration curve (Figure. 3-7-3-1), we were able to obtain the absolute unit of fluorescence (Table. 3-7-3-1). The way we obtained the absolute unit is described in the 4. Material and Method section. These results show that the intensity of fluorescence was in the following order, Device1>Device2>positive control>Device3>negative control.</p>
+
                <table width="940 px" border="0px">
+
                <tr>
+
                <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/c/ca/Tokyo_Tech_Interlab_Table.3-7-3-1.png" width="940px"/>
+
                </td>
+
                </tr>
+
                <tr>
+
                <td width="940px">
+
                <h4 align="center" class="fig"><strong>Table. 3-7-3-1.</strong>&nbsp;The absolute unit of fluorescence intensity</h4>
+
                <td>
+
                </tr>
+
      </table><br><br>
+
<p class="text2">We calculated the arithmetic mean for each sample by adding the nine values of all three colonies and dividing it by 9.
+
We also calculated the standard deviation for each sample from the calculated arithmetic mean. (Table. 3-7-3-2)
+
</p>
+
                <table width="940 px" border="0px">
+
                <tr>
+
                <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/a/a6/Tokyo_Tech_Interlab_Table.3-7-3-2.png" width="700px"/>
+
                </td>
+
                </tr>
+
                <tr>
+
                <td width="940px">
+
                <h4 align="center" class="fig"><strong>Table. 3-7-3-2.</strong>&nbsp;Arithmetic mean (Mean) and Standard deviation (S.D) of samples.</h4>
+
                <td>
+
                </tr>
+
      </table><br>
+
    <table width="980 px" border="0px">
+
 
       <tr>
 
       <tr>
       <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/c/c3/Tokyo_Tech_Interlab_Fig.3-7-3-2.png" width="530px"/>
+
       <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/2/21/Tokyo_Tech_c4HSLsummary4.png" width="450px"/>
 
       </td>
 
       </td>
 
       </tr>
 
       </tr>
 
       <tr>
 
       <tr>
       <td width="980px">
+
       <td width="940px">
       <h4 align="center" class="fig"><strong>Fig.3-7-3-2.</strong>&nbsp;Results from the plate reader
+
       <h4 align="center" class="fig"><strong>Fig.&nbsp;3-1-2-2.</strong>&nbsp;Plasmids for the experiment of C4HSL-dependent CmR expression</h4>
<br>The error bar represents the standard deviation for each sample calculated from the nine values of all three colonies.</h4>
+
      <td>
 +
      </tr>
 +
      </table>
 +
              <h3 id="Summary2" class="sub5">2.2. Insertion of an ssrA degradation tag to CmR</h3>
 +
                <p class="text2">At the first stage of wet experiment, Prisoner cell A and B, which are the initially designed circuits showed leaky expression of CmR. Cells showed active growth even in the absence of AHL when the cell harboring the pairs of plasmids (1) and (2) in Prisoner <i>coli</i> A (Fig. 3-1-2-2.). As a result of our modeling, the influence of the leakage was not reduced by increasing the Cm concentration, which was one of our solutions. (link to modelingリンクさせる!!)<br>&nbsp;&nbsp;
 +
For precise implementation of our payoff matrix, suggestions from modeling (link to modelingリンクさせる!!) allowed us to successfully solve the influence of the leakage by adding an ssrA tag right after the CmR gene (Pcon_<i>rhlR</i>_TT_Plux_CmRssrA, <a href="http://parts.igem.org/Part:BBa_K1632023">BBa_K1632023</a>) (Fig. 3-1-2-3.). Protein with an ssrA tag is easily degraded by ClpXP and ClpAP that <i>E.coli</i> originally have. The optical density was measured every hour for eight hours to estimate the growth of the Prisoner <i>coli</i> with the improved parts (Pcon_<i>rhlR</i>_TT_Plux_CmRssrA).
 +
</p><br>
 +
          <table width="940 px" border="0px">
 +
      <tr>
 +
      <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/c/c8/Tokyo_Tech_c4HSL_summary5.png" width="400px"/>
 +
      </td>
 +
      </tr>
 +
      <tr>
 +
      <td width="940px">
 +
      <h4 align="center" class="fig"><strong>Fig.&nbsp;3-1-2-3.</strong>&nbsp; The improved parts, <a href="http://parts.igem.org/Part:BBa_K1632023">BBa_K1632023</a>, we constructed</h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
      </table><br><br>
 
              <h3 id="Flow" class="sub5">3-2. Flow cytometer</h3>
 
          <p class="text2">We measured the geometric mean of fluorescence intensity for each sample. The results are shown below (Table.3-7-3-3). We measured three colonies(#1〜3) three times (Technical replicate 1〜3) per each sample (Device1〜3,positive control and negative control).<br>
 
&nbsp;&nbsp;These results show that the intensity of fluorescence was in the following order, Device1>Device2>positive control>Device3>negative control. (Table. 3-7-3-4)(Figure. 3-7-3-3)<br>
 
&nbsp;&nbsp;These results are the same as the results from the measurement done by the plate reader.</p>
 
                <table width="940 px" border="0px">
 
                <tr>
 
                <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/8/80/Tokyo_Tech_Interlab_Table.3-7-3-3.png" width="940px"/>
 
                </td>
 
                </tr>
 
                <tr>
 
                <td width="940px">
 
                <h4 align="center" class="fig"><strong>Table. 3-7-3-3.</strong>&nbsp;Results from the flow cytometer</h4>
 
                <td>
 
                </tr>
 
      </table><br>
 
                <table width="940 px" border="0px">
 
                <tr>
 
                <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/0/0a/Tokyo_Tech_Interlab_Table.3-7-3-4.png" width="700px"/>
 
                </td>
 
                </tr>
 
                <tr>
 
                <td width="940px">
 
                <h4 align="center" class="fig"><strong>Table. 3-7-3-4.</strong>&nbsp;Arithmetic mean (Mean) and Standard deviation (S.D) of samples.</h4>
 
                <td>
 
                </tr>
 
 
       </table><br>
 
       </table><br>
    <table width="980 px" border="0px">
+
          <table width="940 px" border="0px">
 
       <tr>
 
       <tr>
       <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/3/3e/Tokyo_Tech_Interlab_Fig.3-7-3-4.png" width="530px"/>
+
       <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/3/36/Tokyo_Tech_c4HSL_summary6.png" width="400px"/>
 
       </td>
 
       </td>
 
       </tr>
 
       </tr>
 
       <tr>
 
       <tr>
       <td width="980px">
+
       <td width="940px">
       <h4 align="center" class="fig"><strong>Fig.3-7-3-3.</strong>&nbsp;Results from the flow cytometer <br>The error bar represents the standard deviation for each sample calculated from the nine values of all three colonies.
+
       <h4 align="center" class="fig"><strong>Fig.&nbsp;3-1-2-4.</strong>&nbsp;Cells for the experiment to measure C4HSL-dependent CmR expression</h4>
</h4>
+
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
       </table><br><br>
+
       </table><br>
  
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
              <h3 id="Summary3" class="sub5">2.3. Realizing the payoff matrix</h3>
 +
              <h3 id="Summary31" class="sub6">2.3.1. Determining the ideal Cm Concentration</h3>
 +
                <p class="text3">Using the improved plasmid we constructed, our <i>E.coli</i> version payoff matrix was replicated through wet experiments. The order of the ODs were as expected. (もしくは We tried to realize the payoff matrix.)  However, from the results, the difference between “middle” and “high” growth inhibition was hardly observable. <br>&nbsp;&nbsp;&nbsp;
 +
The growth rate of the Prisoner cells (5) and (6), grown in different Cm concentration (50, 75, 100microg/mL) without C4HSL, were observed. (refer protocol 4-2-3)
 +
</p>
 +
              <h3 id="Summary32" class="sub6">2.3.2. Payoff matrix with the lower Cm Concentration</h3>
 +
                <p class="text3">Using the lower Cm concentration (75microg/mL), the growth of the Prisoner cells (5) and (6) were measured to realize the payoff matrix.</p>
 +
 +
 +
 +
 +
          <h2 id="Results" class="smalltitle">3. Results</h2>
 +
              <h3 id="Result1" class="sub5">3.1. Arabinose dependent FimE expression</h3>
 +
          <p class="text2">私たちは、4種類のarabinose濃度でFimBが働くかどうかを、GFPを用いたレポーターアッセイによって確かめた。
 +
 Figure(図番号) は、default ONのサンプルが、arabinose誘導によって、OFF状態に切り替わった結果を示している。
 +
またFigure(図番号)は、default OFFのサンプルが、arabinose誘導によって、ON状態に切り替わった結果を示している。
 +
Figure(図番号) shows our experimental results of FimB and Fimswitch. From the results of the reporter cell C and D, inversion from ON to OFF and OFF to ON by endogenous proteins are negligible. レポーターセルE,Fの結果から、FImEの発現はヒストグラムの波形にほとんど影響を与えないことがわかる。
 +
以上の2つの結果から、FimBが理想的に両反転を起こしていることがわかる。
 +
</p>
 +
                <table width="940 px" border="0px">
 +
                  <tr>
 +
                  <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/1/1a/Tokyo_Tech_arabinose_fimB_result1.png" width="800px"/>
 +
      </td>
 +
      </tr>
 +
      <tr>
 +
      <td width="980px">
 +
      <h4 align="center" class="fig"><strong>Fig. 3-4-3-1.</strong></h4>
 +
      <td>
 +
      </tr>
 +
      </table>
 +
              <h3 id="Result2" class="sub5">3.2. FLA analysis</h3>
 +
          <p class="text2">写真とシークエンスデータ</p>
 
           <h2 id="Materials" class="smalltitle">4. Materials and Methods</h2>
 
           <h2 id="Materials" class="smalltitle">4. Materials and Methods</h2>
 
               <h3 id="Const" class="sub5">4.1.  Construction</h3>
 
               <h3 id="Const" class="sub5">4.1.  Construction</h3>
 
               <h3 class="sub5">-Strain</h3>
 
               <h3 class="sub5">-Strain</h3>
          <p class="text2">All the samples were DH5alpha strain.</p>
+
          <p class="text2">All the samples were JM2.300 strain.</p>
 
               <h3 class="sub5">-Plasmids</h3>
 
               <h3 class="sub5">-Plasmids</h3>
          <p class="text2">Device 1: J23101 + I13504(pSB1C3)
+
 
 +
 
 +
 
 +
 
 +
 
 +
          <p class="text2">(1) Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1) + Plac_lasI (pSB3K3)</p>
 
                 <table width="980 px" border="0px">
 
                 <table width="980 px" border="0px">
 
                   <tr>
 
                   <tr>
                   <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/1/1c/Tokyo_Tech_Device1.png"/>
+
                   <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/b/be/Tokyo_Tech_Pcon_rhlR_TT_Plux_CmRssrA_Plac_lasI.png"/>
 
       </td>
 
       </td>
 
       </tr>
 
       </tr>
 
       <tr>
 
       <tr>
 
       <td width="980px">
 
       <td width="980px">
       <h4 align="center" class="fig"><strong>Fig.3-7-4-1.</strong></h4>
+
       <h4 align="center" class="fig"><strong>Fig. 3-1-4-1.</strong></h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
       </table><br>
+
       </table>
          <p class="text2">Device 2: J23106 + I13504(pSB1C3)
+
          <p class="text2">(2) Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1) +promoter less_lasI (pSB3K3)</p>
 
                 <table width="980 px" border="0px">
 
                 <table width="980 px" border="0px">
 
                   <tr>
 
                   <tr>
                   <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/3/3b/Tokyo_Tech_Device2.png"/>
+
                   <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/2/24/Tokyo_Tech_Pcon_rhlR_TT_Plux_CmRssrA_lasI.png"/>
 
       </td>
 
       </td>
 
       </tr>
 
       </tr>
 
       <tr>
 
       <tr>
 
       <td width="980px">
 
       <td width="980px">
       <h4 align="center" class="fig"><strong>Fig.3-7-4-2.</strong></h4>
+
       <h4 align="center" class="fig"><strong>Fig. 3-1-4-2.</strong></h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
       </table><br>
+
       </table>
          <p class="text2">Device 1: J23117 + I13504(pSB1C3)
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
          <p class="text2">(3) Pcon_rhlR_TT_Plux_CmR (pSB6A1) + Plac_lasI (pSB3K3)</p>
 
                 <table width="980 px" border="0px">
 
                 <table width="980 px" border="0px">
 
                   <tr>
 
                   <tr>
                   <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/b/be/Tokyo_Tech_Device3.png"/>
+
                   <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/e/e0/Tokyo_Tech_Pcon_rhlR_TT_CmR_Plac_lasI.png"/>
 
       </td>
 
       </td>
 
       </tr>
 
       </tr>
 
       <tr>
 
       <tr>
 
       <td width="980px">
 
       <td width="980px">
       <h4 align="center" class="fig"><strong>Fig.3-7-4-3.</strong></h4>
+
       <h4 align="center" class="fig"><strong>Fig. 3-1-4-3.</strong></h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
       </table><br>
+
       </table>
          <p class="text2">Positive control: BBa_I20270(pSB1C3)
+
          <p class="text2">(4) Pcon_rhlR_TT_Plux_CmR (pSB6A1) +promoter less_lasI (pSB3K3)</p>
 
                 <table width="980 px" border="0px">
 
                 <table width="980 px" border="0px">
 
                   <tr>
 
                   <tr>
                   <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/0/09/Tokyo_Tech_Interpositive.png"/>
+
                   <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/3/30/Tokyo_Tech_Pcon_rhlR_TT_Plux_CmR_lasI.png"/>
 
       </td>
 
       </td>
 
       </tr>
 
       </tr>
 
       <tr>
 
       <tr>
 
       <td width="980px">
 
       <td width="980px">
       <h4 align="center" class="fig"><strong>Fig.3-7-4-4.</strong></h4>
+
       <h4 align="center" class="fig"><strong>Fig. 3-1-4-4.</strong></h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
       </table><br>
+
       </table>
          <p class="text2">Negative control: BBa_R0040(pSB1C3)
+
          <p class="text2">(5) Negative control1: Pcon_rhlR_TT_promoter less_CmR (pSB6A1) + Plac_lasI (pSB3K3)</p>
 
                 <table width="980 px" border="0px">
 
                 <table width="980 px" border="0px">
 
                   <tr>
 
                   <tr>
                   <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/1/1b/Tokyo_Tech_Internegative.png"/>
+
                   <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/e/eb/Tokyo_Tech_Pcon_rhlR_TT_CmR_Plac_lasI.2png.png"/>
 
       </td>
 
       </td>
 
       </tr>
 
       </tr>
 
       <tr>
 
       <tr>
 
       <td width="980px">
 
       <td width="980px">
       <h4 align="center" class="fig"><strong>Fig.3-7-4-5.</strong></h4>
+
       <h4 align="center" class="fig"><strong>Fig. 3-1-4-5.</strong></h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
       </table><br>
+
       </table>
              <h3 class="sub5">-Sequence Data</h3>
+
          <p class="text2">(6) Negative cotrol2:Pcon_rhlR_TT_promoter less_CmR (pSB6A1) +promoter less_lasI (pSB3K3)</p>
          <p class="text2">Please refer to <a href ="https://2015.igem.org/Team:Tokyo_Tech/Experiment/Interlab/Sequence">Sequence Data</a> page.<br>
+
                <table width="980 px" border="0px">
              <h3 id="ID" class="sub5">4.2.  Instruments and Date</h3>
+
                  <tr>
              <h3 id="Inst" class="sub6">4.2.1. Instruments</h3>
+
                  <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/4/45/Tokyo_Tech_Pcon_rhlR_TT_CmR_lasI.png"/>
                <p class="text2"><strong>-Plate reader</strong></p>
+
      </td>
                  <p class="text3">We used FujiFilm FLA-5100 Fluorescent Image Analyzer from FUJI Film Life Science. The wavelength of light we used to excite the cells was 473 nm. We used BPB1 (530DF20) filter to capture the light emission from the cells. The sampling frequency is only one time.
+
      </tr>
</p>
+
      <tr>
                <p class="text2"><strong>-Flow cytomerer</strong></p>
+
      <td width="980px">
                  <p class="text3">We used BD FACSCaliburTM Flow Cytometer of Becton, Dickenson and Company. The wavelength of light we used to excite the cells was 488 nm. We used laser detection channel FL1 to capture the light emission from the cells. Laser detection channel Fl1 was used with sensitivity 680 [v]. The sampling frequency is only one time.</p>
+
      <h4 align="center" class="fig"><strong>Fig. 3-1-4-6.</strong></h4>
              <h3 id="Date" class="sub6">4.2.2. Date</h3>
+
      <td>
                <p class="text3">Cloning of constructs was confirmed by October 21st 2015. Transformant plates were from 24 October 2015. All the samples were measured on October 27th 2015.</p>
+
      </tr>
               <h3 id="Protocol" class="sub5">4.3. Protocol</h3>
+
      </table>
               <h3 id="reader" class="sub6">4.3.1. Plate reader</h3>
+
               <h3 id="Protocol" class="sub5">4.2. Assay Protocol</h3>
 +
               <h3 id="Protol1" class="sub6">4.2.1. C4HSL-dependent CmR expression assay</h3>
 
                     <p class="text4">
 
                     <p class="text4">
1.  Prepare 3 over night cultures for each sample Device1〜Device3, Positive control and Negative control in 3 mL LB medium containing chloramphenicol (35 microg / mL) at 37 °C for 17h and shake at 180 rpm.<br>
+
<strong>-samples</strong><br>  
2 .Measured the OD590 of each sample and diluted each sample to adjust OD590 within 5% of 0.5.<br>
+
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#1<br>
3. Set the plate reader to measure GFP.<br>  
+
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#2<br>
4. Take 1 mL of the samples, and centrifuge at 9000x g, 1 min, 4°C.<br>
+
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+ promoter less_lasI (pSB3K3)#1<br>
5. Remove the supernatants by using P1000 pipette. <br>
+
Pcon_rhlR_TT_Plux_CmR (pSB6A1) + promoter less_lasI (pSB3K3)#2<br>
6. Add 1 mL of filtered PBS (phosphate-buffered saline) and suspend.<br>
+
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+Plac_lasI (pSB3K3)#1<br>
7. Place 200 μL of each sample into the 96-well plate as described in Table. 3-7-4-1.<br>
+
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+Plac_lasI (pSB3K3)#2<br>
8. Measure the fluorescence intensity with plate reader.<br>  
+
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#1<br>
9. Rotate the 96-well plate 180 degrees horizontally and measure the fluorescence intensity again.<br></p>
+
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#2<br>
                <table width="940 px" border="0px">
+
</p>
                <tr>
+
                    <p class="text4"><br>
                <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/f/f7/Tokyo_Tech_Interlab_Table.3-7-4-1.png" width="700px"/>
+
<strong>-Procedure</strong><br>
                </td>
+
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.<br>
                </tr>
+
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp (50 microg/mL) and Kan (30 microg/mL) and grow the cells at 37°C until the observed OD590 reaches 0.5.<br>
                <tr>
+
3. Centrifuge 1 mL of the sample at 5000g, RT for 1 minute.<br>
                <td width="940px">
+
4. Suspend the pellet in 1mL of LB containing Amp and Kan.<br>
                <h4 align="center" class="fig"><strong>Table. 3-7-4-1.</strong>&nbsp;Position of samples in 96-well plate</h4>
+
5. Add 30 microL of suspension in the following medium.<br>
                <td>
+
&nbsp;&nbsp;&nbsp;①)LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + 50 microM C4HSL (30 microL) + Chloramphenicol (3 microL of 100 microg/mL)<br>
                </tr>
+
&nbsp;&nbsp;&nbsp;②)LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (30 microL) + Chloramphenicol (3 microL of 100 microg/mL)<br>
      </table><br>
+
6. Grow the samples of cells at 37°C for more than 8 hours.<br>
               <h3 id="meter" class="sub6">4.3.2. Flow cytometer</h3>
+
7. Measure optical density every hour. (If the optical density is over 1.0, dilute the cell medium to 1/5.)<br><br>
 +
 
 +
               <h3 id="Protol2" class="sub6">4.2.2. C4HSL-dependent CmR expression assay (With an ssrA tag)</h3>
 
                     <p class="text4">
 
                     <p class="text4">
1. Prepare 3 over night cultures for each sample Device1〜Device3, Positive control and Negative control in 3m LB medium containing chloramphenicol (35 microg / mL) at 37°C for 17h and shake at 180 rpm.<br>
+
<strong>-samples</strong><br>
2. Start preparing the flow cytometer 1 h before the end of incubation.<br>
+
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#1<br>
3. Measure the OD590 and adjust the volume of each sample to centrifuge so that the amount of pellet will be about the same for every sample.<br>
+
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#2<br>
4. Centrifuge the samples at 9000x g, 1min, 4°C.<br>
+
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#1<br>
5. Remove the supernatants by using P1000 pipette and suspend the samples with 1mL of filtered PBS (phosphate-buffered saline).<br>
+
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#2<br>
6. Dispense all of each suspension into a disposable tube through a cell strainer.<br>
+
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#1<br>
7. Measure fluorescence intensity with flow cytometer.<br><br>
+
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#2<br>
              <h3 id="How" class="sub5">4.4. How to process the data</h3>
+
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#1<br>
               <h3 id="Pr" class="sub6">4.4.1. Plate reader</h3>
+
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#2<br>
 +
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+Plac_lasI (pSB3K3)#1<br>
 +
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+Plac_lasI (pSB3K3)#2<br>
 +
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+promoter less_lasI (pSB3K3)#1<br>
 +
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+promoter less_lasI (pSB3K3)#2<br>
 +
<br>
 +
<strong>-Procedure</strong><br>
 +
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.<br>
 +
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp (50 microg/mL) and Kan (30 microg/mL) and grow the cells at 37°C until the observed OD590 reaches 0.5.<br>
 +
3. Centrifuge 1 mL of the sample at 5000g, RT for 1 minute.<br>
 +
4. Suspend the pellet in 1mL of LB containing Amp and Kan.<br>
 +
5. Add 30 microL of suspension in the following medium.<br>
 +
&nbsp;&nbsp;&nbsp;①)LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + 50 microM C4HSL (30 microL) + Chloramphenicol (3 microL of 100 microg/mL)<br>
 +
&nbsp;&nbsp;&nbsp;②)LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (30 microL) + Chloramphenicol (3 microL of 100 microg/mL)<br>
 +
6. Grow the samples of cells at 37°C for more than 8 hours.<br>
 +
7. Measure optical density every hour. (If the optical density is over 1.0, dilute the cell medium to 1/5.)<br></p>
 +
               <h3 id="Protol3" class="sub6">4.2.3. Chloramphenicol-dependent Growth Assay with ssrA tag</h3>
 
                     <p class="text4">
 
                     <p class="text4">
<strong>-How to draw the calibration curve</strong><br>
+
<strong>-samples</strong><br>
1. Place 200 μL of various concentrations of sodium fluorescein (500, 375, 250, 125, 50, 25, 10, 5 ng / mL and PBS only) into the 96-well plate in triplicate.<br>
+
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#1<br>
2. Measure the fluorescence intensity with the plate reader.<br>
+
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#2<br>
3. Rotate the 96-well plate 180 degrees horizontally.<br>
+
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#1<br>
4. Measure the fluorescence intensity again.<br>  
+
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#2<br>
5. Determine the auto-fluorescence of PBS by calculating the arithmetic mean of fluorescence intensity of PBS added in triplicate and use this value as the background fluorescence. <br>
+
<br><strong>-Procedure</strong><br>
6. Subtract background fluorescence from each fluorescence intensity value of each well containing sodium fluorescein.<br>
+
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.<br>
7. Take the arithmetic mean of the three technical replicates of sodium fluorescein of each concentration.<br>
+
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp (50 microg/mL) and Kan (30 microg/mL) and grow the cells at 37°C until the observed OD590 reaches 0.5.<br>
8. Draw the calibration curve.<br> </p><br>
+
3. Centrifuge 1 mL of the sample at 5000g, RT for 1 minute.<br>
 +
4. Suspend the pellet in 1 mL of LB containing Amp and Kan.<br>
 +
5. Add 30 microL of suspension in the following medium.<br>
 +
&nbsp;&nbsp;&nbsp;①) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (3 microL) + Chloramphenicol (6 microL of 25 microg/mL) + 99.5% ethanol (6 microL)<br>
 +
&nbsp;&nbsp;&nbsp;②) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (3 microL) + Chloramphenicol (9 microL of 25 microg/mL) + 99.5% ethanol (3 microL)<br>
 +
&nbsp;&nbsp;&nbsp;③) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (3 microL) + Chloramphenicol (12 microL of 25 microg/mL)<br>
 +
6. Grow the samples of cells at 37°C for more than 8 hours.<br>
 +
7. Measure the optical density every hour. (If the optical density is over 0.9, dilute the cell medium to 1/5.)<br>
 +
              <h3 id="Protol4" class="sub6">4.2.4. C4HSL-dependent CmR expression assay ([Cm] = 75 microg/mL)</h3>
 
                     <p class="text4">
 
                     <p class="text4">
<strong>-How to obtain the absolute unit of fluorescence intensity</strong><br>
+
<strong>-Samples</strong><br>
1. Measure the fluorescence intensity with the plate reader.<br>
+
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#1<br>
2. Rotate the 96-well plate 180 degrees horizontally and measure the fluorescence intensity again.<br>
+
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#2<br>
3. Calculate the arithmetic mean of these two results.<br>
+
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#1<br>
4. Determine the auto-florescence of PBS by calculating the arithmetic mean of fluorescence intensity of PBS added in triplicate and use this value as the background fluorescence.<br>  
+
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#2<br>
5. Subtract the background fluorescence from each well containing the samples.<br>
+
<br><strong>-Procedure</strong><br>
6. Divide them by the value of OD590 of each sample.<br>
+
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.<br>
7. Calculate the ng / mL fluorescence per OD590 unit by the formula we obtained from drawing the calibration curve.<br>
+
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp (50 microg/mL) and Kan (30 microg/mL) and grow the cells at 37°C until the observed OD590 reaches 0.5.<br>
              <h3 id="Flow cytometer" class="sub6">4.4.2. Flow cytometer</h3>
+
3. Centrifuge 1 mL of the sample at 5000g, RT for 1 minute.<br>
                    <p class="text3">Cells were gated according to the side scatter (SSC) and the forward scatter (FCS) to exclude cell debris and impurities.</p><br><br>
+
4. Suspend the pellet in 1mL of LB containing Amp and Kan.<br>
              <h3 id="Individuals" class="sub5">4.5. Individuals responsible for conducting Interlab study</h3>
+
5. Add 30 microL of suspension in the following medium.<br>
          <p class="text2">
+
&nbsp;&nbsp;&nbsp;①) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + 50 microM C4HSL (30 microL) + Chloramphenicol (75 microg/mL)<br>
Misa Minegishi : Measured the devices and processed the data.<br>
+
&nbsp;&nbsp;&nbsp;②) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (30 microL) + Chloramphenicol (75 microg/mL)<br>
&nbsp;&nbsp;&nbsp;Yuta Yamazaki : Measured the devices and processed the data.<br>
+
6. Grow the samples of cells at 37°C for more than 8 hours.<br>
&nbsp;&nbsp;&nbsp;Hiraku Tokuma : Created the devices.<br>
+
7. Measure optical density every hour. (If the optical density is over 0.9, dilute the cell medium to 1/5.)<br>  
&nbsp;&nbsp;&nbsp;Riku Shinohara: Created the devices.<br>
+
           <h2 id="Reference" class="smalltitle">6. Reference</h2>
           <h2 id="Reference" class="smalltitle">5. Reference</h2>
+
      <p class="text">1. Bo Hu <em>et al.</em> (2010) An Environment-Sensitive Synthetic Microbial Ecosystem. PLoS ONE 5(5): e10619</p>
      <p class="text"><a href ="https://2014.igem.org/Team:Imperial/InterLab_Study">2014 Imperial Interlab Study</a><br><br><br>
+
 
     </div>
 
     </div>
 
    <div class="textbottom">
 
    <div class="textbottom">

Latest revision as of 07:43, 18 September 2015

C4HSL-dependent CmR expression

  
  

1. Introduction

      

   

2. Summary of the Experiment

2.1. C4HSL-dependent CmR expression

      

Fig. 3-1-2-1. C4HSL-dependent CmR expression

We confirmed the function of C4HSL-dependent CmR expression by measuring the optical density of the cultures containing chloramphenicol (Cm) (Fig. 3-1-2-1.). In this experiment we prepared four cells which contain different sets of plasmids, (1), (2), (3), and (4) (Fig. 3-1-2-2.). C4HSL and chloramphenicol was added into the medium containing the cells. The optical density was measured every hour for eight hours to estimate the concentration of the cell. (1), and (2) are the cooperating and defecting prisoner coli A, respectively. (3), and (4) are the negative control for (1), and (2), respectively.

      

Fig. 3-1-2-2. Plasmids for the experiment of C4HSL-dependent CmR expression

2.2. Insertion of an ssrA degradation tag to CmR

At the first stage of wet experiment, Prisoner cell A and B, which are the initially designed circuits showed leaky expression of CmR. Cells showed active growth even in the absence of AHL when the cell harboring the pairs of plasmids (1) and (2) in Prisoner coli A (Fig. 3-1-2-2.). As a result of our modeling, the influence of the leakage was not reduced by increasing the Cm concentration, which was one of our solutions. (link to modelingリンクさせる!!)
   For precise implementation of our payoff matrix, suggestions from modeling (link to modelingリンクさせる!!) allowed us to successfully solve the influence of the leakage by adding an ssrA tag right after the CmR gene (Pcon_rhlR_TT_Plux_CmRssrA, BBa_K1632023) (Fig. 3-1-2-3.). Protein with an ssrA tag is easily degraded by ClpXP and ClpAP that E.coli originally have. The optical density was measured every hour for eight hours to estimate the growth of the Prisoner coli with the improved parts (Pcon_rhlR_TT_Plux_CmRssrA).


      

Fig. 3-1-2-3.  The improved parts, BBa_K1632023, we constructed


      

Fig. 3-1-2-4. Cells for the experiment to measure C4HSL-dependent CmR expression


2.3. Realizing the payoff matrix

2.3.1. Determining the ideal Cm Concentration

Using the improved plasmid we constructed, our E.coli version payoff matrix was replicated through wet experiments. The order of the ODs were as expected. (もしくは We tried to realize the payoff matrix.) However, from the results, the difference between “middle” and “high” growth inhibition was hardly observable.
    The growth rate of the Prisoner cells (5) and (6), grown in different Cm concentration (50, 75, 100microg/mL) without C4HSL, were observed. (refer protocol 4-2-3)

2.3.2. Payoff matrix with the lower Cm Concentration

Using the lower Cm concentration (75microg/mL), the growth of the Prisoner cells (5) and (6) were measured to realize the payoff matrix.

3. Results

3.1. Arabinose dependent FimE expression

      

私たちは、4種類のarabinose濃度でFimBが働くかどうかを、GFPを用いたレポーターアッセイによって確かめた。  Figure(図番号) は、default ONのサンプルが、arabinose誘導によって、OFF状態に切り替わった結果を示している。 またFigure(図番号)は、default OFFのサンプルが、arabinose誘導によって、ON状態に切り替わった結果を示している。 Figure(図番号) shows our experimental results of FimB and Fimswitch. From the results of the reporter cell C and D, inversion from ON to OFF and OFF to ON by endogenous proteins are negligible. レポーターセルE,Fの結果から、FImEの発現はヒストグラムの波形にほとんど影響を与えないことがわかる。 以上の2つの結果から、FimBが理想的に両反転を起こしていることがわかる。

Fig. 3-4-3-1.

3.2. FLA analysis

      

写真とシークエンスデータ

4. Materials and Methods

4.1. Construction

-Strain

      

All the samples were JM2.300 strain.

-Plasmids

      

(1) Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1) + Plac_lasI (pSB3K3)

Fig. 3-1-4-1.

      

(2) Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1) +promoter less_lasI (pSB3K3)

Fig. 3-1-4-2.

      

(3) Pcon_rhlR_TT_Plux_CmR (pSB6A1) + Plac_lasI (pSB3K3)

Fig. 3-1-4-3.

      

(4) Pcon_rhlR_TT_Plux_CmR (pSB6A1) +promoter less_lasI (pSB3K3)

Fig. 3-1-4-4.

      

(5) Negative control1: Pcon_rhlR_TT_promoter less_CmR (pSB6A1) + Plac_lasI (pSB3K3)

Fig. 3-1-4-5.

      

(6) Negative cotrol2:Pcon_rhlR_TT_promoter less_CmR (pSB6A1) +promoter less_lasI (pSB3K3)

Fig. 3-1-4-6.

4.2. Assay Protocol

4.2.1. C4HSL-dependent CmR expression assay

-samples
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#2
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+ promoter less_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmR (pSB6A1) + promoter less_lasI (pSB3K3)#2
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+Plac_lasI (pSB3K3)#1
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+Plac_lasI (pSB3K3)#2
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#1
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#2


-Procedure
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp (50 microg/mL) and Kan (30 microg/mL) and grow the cells at 37°C until the observed OD590 reaches 0.5.
3. Centrifuge 1 mL of the sample at 5000g, RT for 1 minute.
4. Suspend the pellet in 1mL of LB containing Amp and Kan.
5. Add 30 microL of suspension in the following medium.
   ①)LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + 50 microM C4HSL (30 microL) + Chloramphenicol (3 microL of 100 microg/mL)
   ②)LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (30 microL) + Chloramphenicol (3 microL of 100 microg/mL)
6. Grow the samples of cells at 37°C for more than 8 hours.
7. Measure optical density every hour. (If the optical density is over 1.0, dilute the cell medium to 1/5.)

4.2.2. C4HSL-dependent CmR expression assay (With an ssrA tag)

-samples
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#2
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#2
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#2
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#2
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+Plac_lasI (pSB3K3)#1
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+Plac_lasI (pSB3K3)#2
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+promoter less_lasI (pSB3K3)#1
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+promoter less_lasI (pSB3K3)#2

-Procedure
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp (50 microg/mL) and Kan (30 microg/mL) and grow the cells at 37°C until the observed OD590 reaches 0.5.
3. Centrifuge 1 mL of the sample at 5000g, RT for 1 minute.
4. Suspend the pellet in 1mL of LB containing Amp and Kan.
5. Add 30 microL of suspension in the following medium.
   ①)LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + 50 microM C4HSL (30 microL) + Chloramphenicol (3 microL of 100 microg/mL)
   ②)LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (30 microL) + Chloramphenicol (3 microL of 100 microg/mL)
6. Grow the samples of cells at 37°C for more than 8 hours.
7. Measure optical density every hour. (If the optical density is over 1.0, dilute the cell medium to 1/5.)

4.2.3. Chloramphenicol-dependent Growth Assay with ssrA tag

-samples
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#2
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#2

-Procedure
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp (50 microg/mL) and Kan (30 microg/mL) and grow the cells at 37°C until the observed OD590 reaches 0.5.
3. Centrifuge 1 mL of the sample at 5000g, RT for 1 minute.
4. Suspend the pellet in 1 mL of LB containing Amp and Kan.
5. Add 30 microL of suspension in the following medium.
   ①) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (3 microL) + Chloramphenicol (6 microL of 25 microg/mL) + 99.5% ethanol (6 microL)
   ②) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (3 microL) + Chloramphenicol (9 microL of 25 microg/mL) + 99.5% ethanol (3 microL)
   ③) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (3 microL) + Chloramphenicol (12 microL of 25 microg/mL)
6. Grow the samples of cells at 37°C for more than 8 hours.
7. Measure the optical density every hour. (If the optical density is over 0.9, dilute the cell medium to 1/5.)

4.2.4. C4HSL-dependent CmR expression assay ([Cm] = 75 microg/mL)

-Samples
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#2
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#2

-Procedure
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp (50 microg/mL) and Kan (30 microg/mL) and grow the cells at 37°C until the observed OD590 reaches 0.5.
3. Centrifuge 1 mL of the sample at 5000g, RT for 1 minute.
4. Suspend the pellet in 1mL of LB containing Amp and Kan.
5. Add 30 microL of suspension in the following medium.
   ①) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + 50 microM C4HSL (30 microL) + Chloramphenicol (75 microg/mL)
   ②) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (30 microL) + Chloramphenicol (75 microg/mL)
6. Grow the samples of cells at 37°C for more than 8 hours.
7. Measure optical density every hour. (If the optical density is over 0.9, dilute the cell medium to 1/5.)

6. Reference

      

1. Bo Hu et al. (2010) An Environment-Sensitive Synthetic Microbial Ecosystem. PLoS ONE 5(5): e10619