Difference between revisions of "Team:Tokyo Tech/Experiment/C4HSL-dependent growth assay"

 
(78 intermediate revisions by 2 users not shown)
Line 6: Line 6:
 
   <style type="text/css">
 
   <style type="text/css">
 
     table{
 
     table{
          width: 940px;
 
 
           margin-left: auto;
 
           margin-left: auto;
 
           margin-right: auto;
 
           margin-right: auto;
 
           margin-top:0px;
 
           margin-top:0px;
 
           }
 
           }
        td{
 
          text-align: center;
 
          }
 
 
   </style>
 
   </style>
 
   </head>
 
   </head>
 
   <body>
 
   <body>
 
     <div id="titlearea">
 
     <div id="titlearea">
       <h1>C4HSL dependent growth assay</h1>
+
       <h1>C4HSL-dependent CmR expression</h1>
 
     </div>
 
     </div>
 
     <div id="titlebottom">
 
     <div id="titlebottom">
    <h4 class="subtitle"><strong>コメント</strong></h4>
 
 
     </div>
 
     </div>
 
   <div class="texttop">
 
   <div class="texttop">
Line 28: Line 23:
 
  <div class="textarea">
 
  <div class="textarea">
 
     <h2 class="content2">contents</h2>
 
     <h2 class="content2">contents</h2>
       <h3 class="link"><a href="#1">1. Introduction</a></h3>
+
       <h3 class="link"><a href="#Introduction">1. Introduction</a></h3>
       <h3 class="link"><a href="#2">2. Summary of the Experiments</a></h3>
+
       <h3 class="link"><a href="#Summary">2. Summary of the Experiment</a></h3>
       <h3 class="link2"><a href="#21">2.1 C4HSL dependent CmR expression</a></h3>
+
       <h3 class="link2"><a href="#Summary1">2.1. C4HSL-dependent CmR expression</a></h3>
       <h3 class="link2"><a href="#22">2.2 Adding an ssrA degradation tag</a></h3>
+
       <h3 class="link2"><a href="#Summary2">2.2. Insertion of an ssrA degradation tag to CmR</a></h3>
       <h3 class="link2"><a href="#23">2.3 Realizing the payoff matrix</h3>
+
       <h3 class="link2"><a href="#Summary3">2.3. Realizing the payoff matrix</a></h3>
      <h3 class="link3"><a href="#231">2.3.1 Seeking the ideal Cm concentration</a></h3>
+
        <h3 class="link3"><a href="#Summary31">2.3.1. Determining the ideal Cm Concentration</a></h3>
      <h3 class="link3"><a href="#232">2.3.2 Payoff matrix with the new Cm concentration</a></h3>
+
        <h3 class="link3"><a href="#Summary32">2.3.2. Payoff matrix with the lower Cm Concentration</a></h3>
      <h3 class="link2"><a href="#24">2.4  Adding an ssrA degradation tag</a></h3>
+
       <h3 class="link"><a href="#Results">3. Results</a></h3>
       <h3 class="link"><a href="#3">3. Result</a></h3>
+
       <h3 class="link2"><a href="#Result1">3.1. Arabinose dependent FimE expression</a></h3>
       <h3 class="link2"><a href="#31">3.1 C4HSL-dependent CmR expression</a></h3>
+
       <h3 class="link2"><a href="#Result2">3.2. FLA analysis</a></h3>            
       <h3 class="link2"><a href="#32">3.2 Adding an ssrA degradation tag</a></h3>
+
       <h3 class="link"><a href="#Materials">4. Materials and Methods</a></h3>
      <h3 class="link2"><a href="#33">3.3  Realizing the payoff matrix</h3>
+
       <h3 class="link2"><a href="#Const">4.1.  Construction</a></h3>
      <h3 class="link3"><a href="#331">3.3.1  Seeking the ideal Cm concentration</a></h3>
+
       <h3 class="link2"><a href="#Protocol">4.2. Assay Protocol</a></h3>
      <h3 class="link3"><a href="#332">3.3.2  Payoff matrix with the new Cm concentration</a></h3>
+
         <h3 class="link3"><a href="#Protol1">4.2.1. C4HSL-dependent CmR expression assay</a></h3>
      <h3 class="link2"><a href="#34">3.4  Adding an ssrA degradation tag</a></h3>
+
         <h3 class="link3"><a href="#Protol2">4.2.2. C4HSL-dependent CmR expression assay (With an ssrA tag)</a></h3>
       <h3 class="link"><a href="#4">4. Discussion</a></h3>
+
         <h3 class="link3"><a href="#Protol3">4.2.3. Chloramphenicol-dependent Growth Assay with ssrA tag</a></h3>
      <h3 class="link2"><a href="#41">4.1  The function of the ssrA tag</a></h3>
+
         <h3 class="link3"><a href="#Protol4">4.2.4. C4HSL-dependent CmR expression assay ([Cm] = 75 microg/mL)</a></h3>
      <h3 class="link2"><a href="#42">4.2  </a></h3>               
+
      <h3 class="link"><a href="#Reference">5. Reference</a></h3>
      <h3 class="link"><a href="#5">5. Materials and Methods</a></h3>
+
       <h3 class="link2"><a href="#51">5.1.  Construction</a></h3>
+
       <h3 class="link2"><a href="#52">5.2 Assay Protocol</a></h3>
+
         <h3 class="link3"><a href="#521">5.2.1 C12HSL-dependent CmR expression assay</a></h3>
+
         <h3 class="link3"><a href="#522">5.2.2 Chloramphenicol-dependent Growth Assay </a></h3>
+
         <h3 class="link3"><a href="#523">5.2.3 Chloramphenicol-dependent Growth Assay with ssrA tag</a></h3>
+
         <h3 class="link3"><a href="#523">5.2.4 C12HSL-dependent CmR expression assay ([Cm] = 75 microg/mL)</a></h3>    
+
        <h3 class="link"><a href="#6">6. Reference</a></h3>
+
 
       <br>
 
       <br>
 
     </div>
 
     </div>
Line 63: Line 50:
 
     </div>
 
     </div>
 
   <div class="textarea">
 
   <div class="textarea">
           <h2 id="1" class="smalltitle">1. Introduction</h2>
+
           <h2 id="Introduction" class="smalltitle">1. Introduction</h2>
      <p class="text">We designed a signal-dependent growth system by using signaling molecules and antibiotic resistance gene. In our prisoner’s dilemma game, our prisoner coli A needs 3OC12HSL to acquire chloramphenicol resistance (CmR).<br>&nbsp;&nbsp;&nbsp;
+
      <p class="text"></p>
Pcon_rhlR_TT_Plux_CmR (pSB6A1) cell is an engineered <i>E. coli</i> that contains C4HSL-dependent chloramphenicol resistance gene product (CmR) generator and a constitutive RhlR generator. As a constitutive 3OC12HSL production module, we used Plac_lasI (pSB3K3).<br>&nbsp;&nbsp;&nbsp;For construction of the C4HSL-dependent chloramphenicol resistance gene product (CmR) and 3OC12HSL production module (Plac_lasI), we constructed an improved parts Pcon_rhlR_TT_Plux_CmRssrA, <a href="http://parts.igem.org/Part:BBa_K1632023">BBa_K1632023</a>. The C4HSL-dependent growth was confirmed by measuring the optical density.</p>
+
           <h2 id="Summary" class="smalltitle">2. Summary of the Experiment</h2>
          <table width="940 px" border="0px">
+
              <h3 id="Summary1" class="sub5">2.1. C4HSL-dependent CmR expression</h3>
          <tr>
+
          <table width="940 px" border="0px">
                <td width="940px"><div align="center"><img src="" width="600px" />
+
      <tr>
                </td>
+
      <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/3/36/Tokyo_Tech_c4HSL_summary2.png" width="600px"/>
                </tr>
+
      </td>
                <tr>
+
      </tr>
                <td width="940px">
+
      <tr>
                <h4 align="center" class="fig"><strong>Fig.3-8-3-1.</strong>&nbsp;RAW data<br></h4>
+
      <td width="940px">
                <td>
+
      <h4 align="center" class="fig"><strong>Fig.&nbsp;3-1-2-1.</strong>&nbsp;C4HSL-dependent CmR expression</h4>
                </tr>
+
      <td>
 +
      </tr>
 
       </table>
 
       </table>
 +
                <p class="text2">We confirmed the function of C4HSL-dependent CmR expression by measuring the optical density of the cultures containing chloramphenicol (Cm) (Fig. 3-1-2-1.). In this experiment we prepared four cells which contain different sets of plasmids, (1), (2), (3), and (4) (Fig. 3-1-2-2.).  C4HSL and chloramphenicol was added into the medium containing the cells. The optical density was measured every hour for eight hours to estimate the concentration of the cell. (1), and (2) are the cooperating and defecting prisoner <i>coli</i> A, respectively. (3), and (4) are the negative control for (1), and (2), respectively.</p>
  
  
 +
          <table width="940 px" border="0px">
 +
      <tr>
 +
      <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/2/21/Tokyo_Tech_c4HSLsummary4.png" width="450px"/>
 +
      </td>
 +
      </tr>
 +
      <tr>
 +
      <td width="940px">
 +
      <h4 align="center" class="fig"><strong>Fig.&nbsp;3-1-2-2.</strong>&nbsp;Plasmids for the experiment of C4HSL-dependent CmR expression</h4>
 +
      <td>
 +
      </tr>
 +
      </table>
 +
              <h3 id="Summary2" class="sub5">2.2. Insertion of an ssrA degradation tag to CmR</h3>
 +
                <p class="text2">At the first stage of wet experiment, Prisoner cell A and B, which are the initially designed circuits showed leaky expression of CmR. Cells showed active growth even in the absence of AHL when the cell harboring the pairs of plasmids (1) and (2) in Prisoner <i>coli</i> A (Fig. 3-1-2-2.). As a result of our modeling, the influence of the leakage was not reduced by increasing the Cm concentration, which was one of our solutions. (link to modelingリンクさせる!!)<br>&nbsp;&nbsp;
 +
For precise implementation of our payoff matrix, suggestions from modeling (link to modelingリンクさせる!!) allowed us to successfully solve the influence of the leakage by adding an ssrA tag right after the CmR gene (Pcon_<i>rhlR</i>_TT_Plux_CmRssrA, <a href="http://parts.igem.org/Part:BBa_K1632023">BBa_K1632023</a>) (Fig. 3-1-2-3.). Protein with an ssrA tag is easily degraded by ClpXP and ClpAP that <i>E.coli</i> originally have. The optical density was measured every hour for eight hours to estimate the growth of the Prisoner <i>coli</i> with the improved parts (Pcon_<i>rhlR</i>_TT_Plux_CmRssrA).
 +
</p><br>
 +
          <table width="940 px" border="0px">
 +
      <tr>
 +
      <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/c/c8/Tokyo_Tech_c4HSL_summary5.png" width="400px"/>
 +
      </td>
 +
      </tr>
 +
      <tr>
 +
      <td width="940px">
 +
      <h4 align="center" class="fig"><strong>Fig.&nbsp;3-1-2-3.</strong>&nbsp; The improved parts, <a href="http://parts.igem.org/Part:BBa_K1632023">BBa_K1632023</a>, we constructed</h4>
 +
      <td>
 +
      </tr>
 +
      </table><br>
 +
          <table width="940 px" border="0px">
 +
      <tr>
 +
      <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/3/36/Tokyo_Tech_c4HSL_summary6.png" width="400px"/>
 +
      </td>
 +
      </tr>
 +
      <tr>
 +
      <td width="940px">
 +
      <h4 align="center" class="fig"><strong>Fig.&nbsp;3-1-2-4.</strong>&nbsp;Cells for the experiment to measure C4HSL-dependent CmR expression</h4>
 +
      <td>
 +
      </tr>
 +
      </table><br>
  
  
Line 95: Line 121:
  
  
 +
              <h3 id="Summary3" class="sub5">2.3. Realizing the payoff matrix</h3>
 +
              <h3 id="Summary31" class="sub6">2.3.1. Determining the ideal Cm Concentration</h3>
 +
                <p class="text3">Using the improved plasmid we constructed, our <i>E.coli</i> version payoff matrix was replicated through wet experiments. The order of the ODs were as expected. (もしくは We tried to realize the payoff matrix.)  However, from the results, the difference between “middle” and “high” growth inhibition was hardly observable. <br>&nbsp;&nbsp;&nbsp;
 +
The growth rate of the Prisoner cells (5) and (6), grown in different Cm concentration (50, 75, 100microg/mL) without C4HSL, were observed. (refer protocol 4-2-3)
 +
</p>
 +
              <h3 id="Summary32" class="sub6">2.3.2. Payoff matrix with the lower Cm Concentration</h3>
 +
                <p class="text3">Using the lower Cm concentration (75microg/mL), the growth of the Prisoner cells (5) and (6) were measured to realize the payoff matrix.</p>
  
  
  
  
 +
          <h2 id="Results" class="smalltitle">3. Results</h2>
 +
              <h3 id="Result1" class="sub5">3.1. Arabinose dependent FimE expression</h3>
 +
          <p class="text2">私たちは、4種類のarabinose濃度でFimBが働くかどうかを、GFPを用いたレポーターアッセイによって確かめた。
 +
 Figure(図番号) は、default ONのサンプルが、arabinose誘導によって、OFF状態に切り替わった結果を示している。
 +
またFigure(図番号)は、default OFFのサンプルが、arabinose誘導によって、ON状態に切り替わった結果を示している。
 +
Figure(図番号) shows our experimental results of FimB and Fimswitch. From the results of the reporter cell C and D, inversion from ON to OFF and OFF to ON by endogenous proteins are negligible. レポーターセルE,Fの結果から、FImEの発現はヒストグラムの波形にほとんど影響を与えないことがわかる。
 +
以上の2つの結果から、FimBが理想的に両反転を起こしていることがわかる。
 +
</p>
 +
                <table width="940 px" border="0px">
 +
                  <tr>
 +
                  <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/1/1a/Tokyo_Tech_arabinose_fimB_result1.png" width="800px"/>
 +
      </td>
 +
      </tr>
 +
      <tr>
 +
      <td width="980px">
 +
      <h4 align="center" class="fig"><strong>Fig. 3-4-3-1.</strong></h4>
 +
      <td>
 +
      </tr>
 +
      </table>
 +
              <h3 id="Result2" class="sub5">3.2. FLA analysis</h3>
 +
          <p class="text2">写真とシークエンスデータ</p>
 +
          <h2 id="Materials" class="smalltitle">4. Materials and Methods</h2>
 +
              <h3 id="Const" class="sub5">4.1.  Construction</h3>
 +
              <h3 class="sub5">-Strain</h3>
 +
          <p class="text2">All the samples were JM2.300 strain.</p>
 +
              <h3 class="sub5">-Plasmids</h3>
  
  
Line 104: Line 163:
  
  
 +
          <p class="text2">(1) Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1) + Plac_lasI (pSB3K3)</p>
 +
                <table width="980 px" border="0px">
 +
                  <tr>
 +
                  <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/b/be/Tokyo_Tech_Pcon_rhlR_TT_Plux_CmRssrA_Plac_lasI.png"/>
 +
      </td>
 +
      </tr>
 +
      <tr>
 +
      <td width="980px">
 +
      <h4 align="center" class="fig"><strong>Fig. 3-1-4-1.</strong></h4>
 +
      <td>
 +
      </tr>
 +
      </table>
 +
          <p class="text2">(2) Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1) +promoter less_lasI (pSB3K3)</p>
 +
                <table width="980 px" border="0px">
 +
                  <tr>
 +
                  <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/2/24/Tokyo_Tech_Pcon_rhlR_TT_Plux_CmRssrA_lasI.png"/>
 +
      </td>
 +
      </tr>
 +
      <tr>
 +
      <td width="980px">
 +
      <h4 align="center" class="fig"><strong>Fig. 3-1-4-2.</strong></h4>
 +
      <td>
 +
      </tr>
 +
      </table>
  
  
  
  
          <h2 id="2" class="smalltitle">2. Summary of the Experiment</h2>
 
<h2 id="21" class="sub5">2.1  C4HSL-dependent CmR expression</h2>
 
<p></p>
 
<table><tbody><tr><td>画像</td></tr><tr><td><h4 class="fig">Fig.3-2-2-1. C4HSL-dependent CmR expression</h4></td></tr></tbody></table>
 
<p></p>
 
<p class="text">We confirmed the function of C4HSL-dependent CmR expression by measuring optical density of the cultures containing chloramphenicol (Fig. 3-2-2-1).In this experiment we prepared four plasmids, A, B, C, and D (Fig. 3-2-2-2). Right after the C4HSL induction, we added chloramphenicol into the medium containing Prisoner cell. We measured the optical density for about eight hours to estimate the concentration of the cell.</p>
 
<p></p>
 
<table><tbody><tr><td>画像</td></tr><tr><td><h4 class="fig">Fig.3-2-2-2. Plasmids for the experiment of C4HSL-dependent CmR expression</h4></td></tr></tbody></table>
 
<p></p>
 
<h3 id="23" class="sub5">2.3  Adding an ssrA degradation tag</h3>
 
<p class="text">At the first stage of wet experiment, initially designed circuits showed leaky expression of CmR. Although “middle” and “high” growth inhibition is required for implementation of our payoff matrix (Fig. X), cells showed active growth even in the absence of AHL when the cell harboring our initially designed genetic circuit Pcon_rhlR_TT_Plux_CmR in Prisoner coli B (Fig. X). We could not obtain positive results in our modeling by increasing the concentration of Cm, which was one of our solutions. For precise implementation of our payoff matrix, suggestions from modeling allow us successfully improving the former plasmid by adding an ssrA tag right after the CmR gene (Pcon_rhlR_TT_Plux_CmRssrA (BBa_K1632022)) (Fig.3-2-2-3). The ssrA tag helps to degrade the leaked CmR protein. The improved parts were used for construction of BBa_K1632022 circuit for 3OC12HSL inducible expression of CmR. Compared with circuits without ssrA tag BBa_K395160, our improved BBa_K1632022 indeed showed much slower growth which corresponds to “middle” growth inhibition (Fig.3-2-2-1). Furthermore, addition of 3OC12HSL recovers active cell growth which corresponds to “none” growth inhibition (Fig. 2-1). These results show the improved function of AHL-dependent CmR expression by measuring the optical density. (Projectより引用)</p>
 
<p></p>
 
<table><tbody><tr><td>画像</td></tr><tr><td><h4 class="fig">Fig.3-2-2-3. The improved plasmid (BBa_K1632022) we constructed</h4></td></tr></tbody></table>
 
<p></p>
 
<table><tbody><tr><td>画像</td></tr><tr><td><h4 class="fig">Fig.3-2-2-4. Plasmids for the experiment of C4HSL-dependent CmR expression</h4></td></tr></tbody></table>
 
<p></p>
 
<h2 id="23" class="sub5">2.3  Realizing the payoff matrix</h3>
 
<h2 id="231" class="sub6">2.3.1  Seeking the ideal Cm Concentration</h3>
 
<p class="text">Using the improved plasmids we constructed, our <i>E.coli</i> version payoff matrix is replicated through wet lab experiments. However, from the results shown in (Fig. X), the difference between “middle” growth inhibition and “high” growth inhibition was hardly observable. </p>
 
<p class="text">The experiment was conduvted with different Chloramphenicol concentration (50, 75, 100microg/mL). Incubated in a culture medium without AHL, the difference in the growth rate was observed between the one producing AHL and the one not.
 
</p>
 
<p></p>
 
<h2 id="232" class="sub5">2.3.2  Payoff matrix with the new Cm concentraion</h3>
 
<p class="text">We found out that 75microg/mL is a Cm concentration good enough to realize the payoff matrix precisely. Using the new Cm concentration (75microg/mL), the “C12HSL-dependent CmR expression assay” (refer to 5-2-4) was run again to replicate a precise payoff matrix.</p>
 
<p></p>
 
<h3 id="24" class="sub5">2.4  Decreasing the AHL(C4HSL) Concentration </h3>
 
<p></p>
 
  
<h2 id="3" class="smalltitle">3. Results</h2>
 
<h2 id="31" class="sub5">3.1  C4HSL-dependent CmR expression</h2>
 
<p class="text">We tested four types of culture condition which contains different Cm concentration (0 and 100 microg/mL) and different AHL concentration (0 and 5 nM). Fig. 3-2-3-1, Fig. 3-2-3-2, Fig. 3-2-3-3, Fig. 3-2-3-4 show the condition in the absence and presence of Cm, respectively. Regardless of the presence of Cm, every cell grew in the culture medium even without C4HSL.</p>
 
<p class="text" style="margin-left: 30px;"> Cm (+)…Pcon_rhlR_TT_Plux_CmR (6A1) + Plac_lasI (3K3) (8/27, 28)</p>
 
<p></p>
 
<table><tbody><tr><td><img  src="https://static.igem.org/mediawiki/2015/d/d1/Tokyo_Tech_Growth_las3231.png" width="60%"></td></tr><tr><td><h4 class="fig">Fig.3-2-3-1. Cooperating Prisoner <i>coli</i> B’s growth with Cm</h4></td></tr></tbody></table>
 
<p></p>
 
<p class="text" style="margin-left: 30px;"> Cm (+)…Pcon_rhlR_TT_Plux_CmR (6A1) + ⊿P_lasI (3K3) (8/27,28)</p>
 
<p></p>
 
<table><tbody><tr><td><img  src="https://static.igem.org/mediawiki/2015/e/e5/Tokyo_Tech_Growth_las3232.png" width="60%"></td></tr><tr><td><h4 class="fig">Fig.3-2-3-2. Defecting Prisoner coli B’s growth with Cm</h4></td></tr></tbody></table>
 
<p></p>
 
<p class="text">The expression and the function of CmR was confirmed from (Fig3-2-3-1.) and (Fig. 3-2-3-2), since the Prisoner coli have grown (refer the solid magenta line of (Fig3-2-3-1.) and (Fig. 3-2-3-2)) despite the presence of chloramphenicol in the culture. However, the Prisoner coli have also grown in the culture with chloramphenicol without AHL (dotted magenta line), in other words, the prisoner coli have acquired Cm resistance regardless of the presence of C4HSL. From this fact, leakage in the promoter was suspected (assumed) ((Fig3-2-3-1.) & (Fig. 3-2-3-2)).</p>
 
          <h2 id="32" class="sub5">3.2 Plasmids with an ssrA degradation tag</h2>
 
<p class="text">We repeated the experiment (refer to 3.1) using the new plasmid we constructed. From the results of our experiment, we confirmed that the new prisoner coli B (Pcon_rhlR_TT_Plux_CmRssrA) had expressed CmR when induced by C4HSL, as expected (Fig. 3.2.1 and Fig. 3.2.2).</p>
 
<p class="text" style="margin-left: 30px;"> Pcon_rhlR_TT_Plux_CmR (6A1) + Plac_lasI (3K3) (8/27, 28)</p>
 
<p></p>
 
<table><tbody><tr><td><img src="https://static.igem.org/mediawiki/2015/d/de/Tokyo_Tech_Growth_las3233.png" width="60%"></td></tr><tr><td><h4 class="fig">Fig. 3-2-3-3. Cooperating Prisoner coli B’s growth with an ssrA tag</h4></td></tr></tbody></table>
 
<p></p>
 
<p class="text" style="margin-left: 30px;"> Pcon_rhlR_TT_Plux_CmR (6A1) + ⊿P_lasI (3K3) (8/27, 28)</p>
 
<p></p>
 
<table><tbody><tr><td>画像</td></tr><tr><td><h4 class="fig">Fig.3-2-3-4. Defecting Prisoner <i>coli</i> B's growth with an ssrA tag</h4></td></tr></tbody></table>
 
<p></p>
 
<p class="text">Protein with an ssrA tag is said to be easy to be dissolved by ClpXP and ClpAP that E.coli originally have. From (Fig.3-2-3-3) and (Fig.3-2-3-4), Prisoner coli with an ssrA tag were not able to grow without C4HSL. Therefore, we can say that CmR produced by the leak of the Plux promoter was dissolved immediately while an ssrA tag was added to CmR. Adding an ssrA tag can be said a sufficient method to reduce the influence of the leak of Plux promoter.</p>
 
<p class="text"> Comparing the growth in the 3CO12HSL lacking culture medium of the initial prisoner coli and the new prisoner coli with the ssrA tag, in other words the magenta dotted line and the green dotted line of each (Fig. 3-2-1) and (Fig. 3-2-2), showed that the leaky CmR was reduced by adding an ssrA tag. </p>
 
<p></p>
 
<h2 id="33" class="sub5">3.3 Realizing the payoff matrix</h2>
 
<h2 id="331" class="sub6">3.3.1 Seeking the ideal Cm concentration</h2>
 
<p class="text">We ran the experiment with different Chloramphenicol concentration (50, 75, 100 microg/mL).The following three results are the OD of cooperating Prisoner B (Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1) + Plac_lasI (pSB3K3)) and defecting Prisoner B (Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1) +⊿P_lasI (pSB3K3)) grown in the culture medium without C4HSL. The growth inhibition degree of each stand for “high” and “middle” growth inhibition.</p>
 
<p></p>
 
<table><tbody><tr><td>画像</td></tr><tr><td><h4 class="fig">Fig.3-2-3-5  </h4></td></tr></tbody></table>
 
<p></p>
 
<p class="text">We tried to make the growth inhibition rate of chloramphenicol larger than the metabolic burden of producing 3OC12HSL. But at the same time, making the difference between “middle” and “high” growth inhibition, in other words, replicating a precise pay off matrix, is also our goal. From the experimental results, 75 microg/mL was determined to be a Cm concentration good enough to realize the precise payoff matrix, while the green lines and the orange lines in (Fig. 3-2-3-5) were able to distinguish.</p>
 
<p></p>
 
<h2 id="332" class="sub6">3.3.2  Payoff matrix with the new Cm Concentration</h2>
 
<p class="text">We ran the “C4HSL-dependent CmR expression assay” with the new Chloramphenicol concentration (75 microg/mL). The results are the following.</p>
 
<p></p>
 
<table><tbody><tr><td>画像</td></tr><tr><td>Fig.3-2-3-6 </td></tr></tbody></table>
 
<p></p>
 
<p class="text">With the new Chloramphenicol Concentration, the payoff matrix was replicated precisely. The orange line is when you cooperate, and the green is when you defect. The solid line is when your opponent cooperates, and the dotted is when your opponent defects.</p>
 
<p></p>
 
<h3 id="34" class="sub5">3.4  Decreasing the AHL(C4HSL) Concentration </h3>
 
  
              <h2 id="4" class="sub4">4. Discussion</h2>
+
 
<h2 id="41" class="sub5">4.1 The function of the ssrA tag</h2>
+
 
<p></p>
+
 
               <h2 class="sub5">4.2 </h2>
+
 
<p></p>
+
 
<h2 id="5" class="smalltitle">
+
 
         
+
          <p class="text2">(3) Pcon_rhlR_TT_Plux_CmR (pSB6A1) + Plac_lasI (pSB3K3)</p>
1. コピペ。<br>
+
                <table width="980 px" border="0px">
2. コピペ。<br>
+
                  <tr>
3. コピペ。<br>  
+
                  <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/e/e0/Tokyo_Tech_Pcon_rhlR_TT_CmR_Plac_lasI.png"/>
4. コピペ。<br>
+
      </td>
5. コピペ。<br>
+
      </tr>
6. コピペ。<br>
+
      <tr>
7. コピペ。<br>
+
      <td width="980px">
8. コピペ。<br>
+
      <h4 align="center" class="fig"><strong>Fig. 3-1-4-3.</strong></h4>
9. コピペ。<br>
+
      <td>
 +
      </tr>
 +
      </table>
 +
          <p class="text2">(4) Pcon_rhlR_TT_Plux_CmR (pSB6A1) +promoter less_lasI (pSB3K3)</p>
 +
                <table width="980 px" border="0px">
 +
                  <tr>
 +
                  <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/3/30/Tokyo_Tech_Pcon_rhlR_TT_Plux_CmR_lasI.png"/>
 +
      </td>
 +
      </tr>
 +
      <tr>
 +
      <td width="980px">
 +
      <h4 align="center" class="fig"><strong>Fig. 3-1-4-4.</strong></h4>
 +
      <td>
 +
      </tr>
 +
      </table>
 +
          <p class="text2">(5) Negative control1: Pcon_rhlR_TT_promoter less_CmR (pSB6A1) + Plac_lasI (pSB3K3)</p>
 +
                <table width="980 px" border="0px">
 +
                  <tr>
 +
                  <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/e/eb/Tokyo_Tech_Pcon_rhlR_TT_CmR_Plac_lasI.2png.png"/>
 +
      </td>
 +
      </tr>
 +
      <tr>
 +
      <td width="980px">
 +
      <h4 align="center" class="fig"><strong>Fig. 3-1-4-5.</strong></h4>
 +
      <td>
 +
      </tr>
 +
      </table>
 +
          <p class="text2">(6) Negative cotrol2:Pcon_rhlR_TT_promoter less_CmR (pSB6A1) +promoter less_lasI (pSB3K3)</p>
 +
                <table width="980 px" border="0px">
 +
                  <tr>
 +
                  <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/4/45/Tokyo_Tech_Pcon_rhlR_TT_CmR_lasI.png"/>
 +
      </td>
 +
      </tr>
 +
      <tr>
 +
      <td width="980px">
 +
      <h4 align="center" class="fig"><strong>Fig. 3-1-4-6.</strong></h4>
 +
      <td>
 +
      </tr>
 +
      </table>
 +
              <h3 id="Protocol" class="sub5">4.2. Assay Protocol</h3>
 +
              <h3 id="Protol1" class="sub6">4.2.1. C4HSL-dependent CmR expression assay</h3>
 +
                    <p class="text4">
 +
<strong>-samples</strong><br>
 +
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#1<br>
 +
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#2<br>
 +
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+ promoter less_lasI (pSB3K3)#1<br>
 +
Pcon_rhlR_TT_Plux_CmR (pSB6A1) + promoter less_lasI (pSB3K3)#2<br>
 +
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+Plac_lasI (pSB3K3)#1<br>
 +
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+Plac_lasI (pSB3K3)#2<br>
 +
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#1<br>
 +
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#2<br>
 +
</p>
 +
                    <p class="text4"><br>
 +
<strong>-Procedure</strong><br>
 +
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.<br>
 +
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp (50 microg/mL) and Kan (30 microg/mL) and grow the cells at 37°C until the observed OD590 reaches 0.5.<br>
 +
3. Centrifuge 1 mL of the sample at 5000g, RT for 1 minute.<br>
 +
4. Suspend the pellet in 1mL of LB containing Amp and Kan.<br>
 +
5. Add 30 microL of suspension in the following medium.<br>
 +
&nbsp;&nbsp;&nbsp;①)LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + 50 microM C4HSL (30 microL) + Chloramphenicol (3 microL of 100 microg/mL)<br>
 +
&nbsp;&nbsp;&nbsp;②)LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (30 microL) + Chloramphenicol (3 microL of 100 microg/mL)<br>
 +
6. Grow the samples of cells at 37°C for more than 8 hours.<br>
 +
7. Measure optical density every hour. (If the optical density is over 1.0, dilute the cell medium to 1/5.)<br><br>
 +
 
 +
               <h3 id="Protol2" class="sub6">4.2.2. C4HSL-dependent CmR expression assay (With an ssrA tag)</h3>
 +
                    <p class="text4">
 +
<strong>-samples</strong><br>
 +
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#1<br>
 +
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#2<br>
 +
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#1<br>
 +
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#2<br>
 +
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#1<br>
 +
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#2<br>
 +
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#1<br>
 +
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#2<br>
 +
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+Plac_lasI (pSB3K3)#1<br>
 +
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+Plac_lasI (pSB3K3)#2<br>
 +
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+promoter less_lasI (pSB3K3)#1<br>
 +
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+promoter less_lasI (pSB3K3)#2<br>
 +
<br>
 +
<strong>-Procedure</strong><br>
 +
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.<br>
 +
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp (50 microg/mL) and Kan (30 microg/mL) and grow the cells at 37°C until the observed OD590 reaches 0.5.<br>
 +
3. Centrifuge 1 mL of the sample at 5000g, RT for 1 minute.<br>
 +
4. Suspend the pellet in 1mL of LB containing Amp and Kan.<br>
 +
5. Add 30 microL of suspension in the following medium.<br>
 +
&nbsp;&nbsp;&nbsp;①)LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + 50 microM C4HSL (30 microL) + Chloramphenicol (3 microL of 100 microg/mL)<br>
 +
&nbsp;&nbsp;&nbsp;②)LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (30 microL) + Chloramphenicol (3 microL of 100 microg/mL)<br>
 +
6. Grow the samples of cells at 37°C for more than 8 hours.<br>
 +
7. Measure optical density every hour. (If the optical density is over 1.0, dilute the cell medium to 1/5.)<br></p>
 +
              <h3 id="Protol3" class="sub6">4.2.3. Chloramphenicol-dependent Growth Assay with ssrA tag</h3>
 +
                    <p class="text4">
 +
<strong>-samples</strong><br>
 +
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#1<br>
 +
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#2<br>
 +
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#1<br>
 +
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#2<br>
 +
<br><strong>-Procedure</strong><br>
 +
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.<br>
 +
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp (50 microg/mL) and Kan (30 microg/mL) and grow the cells at 37°C until the observed OD590 reaches 0.5.<br>
 +
3. Centrifuge 1 mL of the sample at 5000g, RT for 1 minute.<br>
 +
4. Suspend the pellet in 1 mL of LB containing Amp and Kan.<br>
 +
5. Add 30 microL of suspension in the following medium.<br>
 +
&nbsp;&nbsp;&nbsp;①) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (3 microL) + Chloramphenicol (6 microL of 25 microg/mL) + 99.5% ethanol (6 microL)<br>
 +
&nbsp;&nbsp;&nbsp;②) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (3 microL) + Chloramphenicol (9 microL of 25 microg/mL) + 99.5% ethanol (3 microL)<br>
 +
&nbsp;&nbsp;&nbsp;③) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (3 microL) + Chloramphenicol (12 microL of 25 microg/mL)<br>
 +
6. Grow the samples of cells at 37°C for more than 8 hours.<br>
 +
7. Measure the optical density every hour. (If the optical density is over 0.9, dilute the cell medium to 1/5.)<br>
 +
              <h3 id="Protol4" class="sub6">4.2.4. C4HSL-dependent CmR expression assay ([Cm] = 75 microg/mL)</h3>
 
                     <p class="text4">
 
                     <p class="text4">
           <h2 id="Reference" class="smalltitle">6.. Reference</h2>
+
<strong>-Samples</strong><br>
      <p class="text">ここにコピペ。<p><br><br><br>
+
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#1<br>
 +
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#2<br>
 +
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#1<br>
 +
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#2<br>
 +
<br><strong>-Procedure</strong><br>
 +
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.<br>
 +
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp (50 microg/mL) and Kan (30 microg/mL) and grow the cells at 37°C until the observed OD590 reaches 0.5.<br>
 +
3. Centrifuge 1 mL of the sample at 5000g, RT for 1 minute.<br>
 +
4. Suspend the pellet in 1mL of LB containing Amp and Kan.<br>
 +
5. Add 30 microL of suspension in the following medium.<br>
 +
&nbsp;&nbsp;&nbsp;①) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + 50 microM C4HSL (30 microL) + Chloramphenicol (75 microg/mL)<br>
 +
&nbsp;&nbsp;&nbsp;②) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (30 microL) + Chloramphenicol (75 microg/mL)<br>
 +
6. Grow the samples of cells at 37°C for more than 8 hours.<br>
 +
7. Measure optical density every hour. (If the optical density is over 0.9, dilute the cell medium to 1/5.)<br>
 +
           <h2 id="Reference" class="smalltitle">6. Reference</h2>
 +
      <p class="text">1. Bo Hu <em>et al.</em> (2010) An Environment-Sensitive Synthetic Microbial Ecosystem. PLoS ONE 5(5): e10619</p>
 
     </div>
 
     </div>
 
    <div class="textbottom">
 
    <div class="textbottom">

Latest revision as of 07:43, 18 September 2015

C4HSL-dependent CmR expression

  
  

1. Introduction

      

   

2. Summary of the Experiment

2.1. C4HSL-dependent CmR expression

      

Fig. 3-1-2-1. C4HSL-dependent CmR expression

We confirmed the function of C4HSL-dependent CmR expression by measuring the optical density of the cultures containing chloramphenicol (Cm) (Fig. 3-1-2-1.). In this experiment we prepared four cells which contain different sets of plasmids, (1), (2), (3), and (4) (Fig. 3-1-2-2.). C4HSL and chloramphenicol was added into the medium containing the cells. The optical density was measured every hour for eight hours to estimate the concentration of the cell. (1), and (2) are the cooperating and defecting prisoner coli A, respectively. (3), and (4) are the negative control for (1), and (2), respectively.

      

Fig. 3-1-2-2. Plasmids for the experiment of C4HSL-dependent CmR expression

2.2. Insertion of an ssrA degradation tag to CmR

At the first stage of wet experiment, Prisoner cell A and B, which are the initially designed circuits showed leaky expression of CmR. Cells showed active growth even in the absence of AHL when the cell harboring the pairs of plasmids (1) and (2) in Prisoner coli A (Fig. 3-1-2-2.). As a result of our modeling, the influence of the leakage was not reduced by increasing the Cm concentration, which was one of our solutions. (link to modelingリンクさせる!!)
   For precise implementation of our payoff matrix, suggestions from modeling (link to modelingリンクさせる!!) allowed us to successfully solve the influence of the leakage by adding an ssrA tag right after the CmR gene (Pcon_rhlR_TT_Plux_CmRssrA, BBa_K1632023) (Fig. 3-1-2-3.). Protein with an ssrA tag is easily degraded by ClpXP and ClpAP that E.coli originally have. The optical density was measured every hour for eight hours to estimate the growth of the Prisoner coli with the improved parts (Pcon_rhlR_TT_Plux_CmRssrA).


      

Fig. 3-1-2-3.  The improved parts, BBa_K1632023, we constructed


      

Fig. 3-1-2-4. Cells for the experiment to measure C4HSL-dependent CmR expression


2.3. Realizing the payoff matrix

2.3.1. Determining the ideal Cm Concentration

Using the improved plasmid we constructed, our E.coli version payoff matrix was replicated through wet experiments. The order of the ODs were as expected. (もしくは We tried to realize the payoff matrix.) However, from the results, the difference between “middle” and “high” growth inhibition was hardly observable.
    The growth rate of the Prisoner cells (5) and (6), grown in different Cm concentration (50, 75, 100microg/mL) without C4HSL, were observed. (refer protocol 4-2-3)

2.3.2. Payoff matrix with the lower Cm Concentration

Using the lower Cm concentration (75microg/mL), the growth of the Prisoner cells (5) and (6) were measured to realize the payoff matrix.

3. Results

3.1. Arabinose dependent FimE expression

      

私たちは、4種類のarabinose濃度でFimBが働くかどうかを、GFPを用いたレポーターアッセイによって確かめた。  Figure(図番号) は、default ONのサンプルが、arabinose誘導によって、OFF状態に切り替わった結果を示している。 またFigure(図番号)は、default OFFのサンプルが、arabinose誘導によって、ON状態に切り替わった結果を示している。 Figure(図番号) shows our experimental results of FimB and Fimswitch. From the results of the reporter cell C and D, inversion from ON to OFF and OFF to ON by endogenous proteins are negligible. レポーターセルE,Fの結果から、FImEの発現はヒストグラムの波形にほとんど影響を与えないことがわかる。 以上の2つの結果から、FimBが理想的に両反転を起こしていることがわかる。

Fig. 3-4-3-1.

3.2. FLA analysis

      

写真とシークエンスデータ

4. Materials and Methods

4.1. Construction

-Strain

      

All the samples were JM2.300 strain.

-Plasmids

      

(1) Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1) + Plac_lasI (pSB3K3)

Fig. 3-1-4-1.

      

(2) Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1) +promoter less_lasI (pSB3K3)

Fig. 3-1-4-2.

      

(3) Pcon_rhlR_TT_Plux_CmR (pSB6A1) + Plac_lasI (pSB3K3)

Fig. 3-1-4-3.

      

(4) Pcon_rhlR_TT_Plux_CmR (pSB6A1) +promoter less_lasI (pSB3K3)

Fig. 3-1-4-4.

      

(5) Negative control1: Pcon_rhlR_TT_promoter less_CmR (pSB6A1) + Plac_lasI (pSB3K3)

Fig. 3-1-4-5.

      

(6) Negative cotrol2:Pcon_rhlR_TT_promoter less_CmR (pSB6A1) +promoter less_lasI (pSB3K3)

Fig. 3-1-4-6.

4.2. Assay Protocol

4.2.1. C4HSL-dependent CmR expression assay

-samples
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#2
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+ promoter less_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmR (pSB6A1) + promoter less_lasI (pSB3K3)#2
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+Plac_lasI (pSB3K3)#1
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+Plac_lasI (pSB3K3)#2
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#1
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#2


-Procedure
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp (50 microg/mL) and Kan (30 microg/mL) and grow the cells at 37°C until the observed OD590 reaches 0.5.
3. Centrifuge 1 mL of the sample at 5000g, RT for 1 minute.
4. Suspend the pellet in 1mL of LB containing Amp and Kan.
5. Add 30 microL of suspension in the following medium.
   ①)LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + 50 microM C4HSL (30 microL) + Chloramphenicol (3 microL of 100 microg/mL)
   ②)LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (30 microL) + Chloramphenicol (3 microL of 100 microg/mL)
6. Grow the samples of cells at 37°C for more than 8 hours.
7. Measure optical density every hour. (If the optical density is over 1.0, dilute the cell medium to 1/5.)

4.2.2. C4HSL-dependent CmR expression assay (With an ssrA tag)

-samples
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#2
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#2
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#2
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#2
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+Plac_lasI (pSB3K3)#1
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+Plac_lasI (pSB3K3)#2
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+promoter less_lasI (pSB3K3)#1
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+promoter less_lasI (pSB3K3)#2

-Procedure
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp (50 microg/mL) and Kan (30 microg/mL) and grow the cells at 37°C until the observed OD590 reaches 0.5.
3. Centrifuge 1 mL of the sample at 5000g, RT for 1 minute.
4. Suspend the pellet in 1mL of LB containing Amp and Kan.
5. Add 30 microL of suspension in the following medium.
   ①)LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + 50 microM C4HSL (30 microL) + Chloramphenicol (3 microL of 100 microg/mL)
   ②)LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (30 microL) + Chloramphenicol (3 microL of 100 microg/mL)
6. Grow the samples of cells at 37°C for more than 8 hours.
7. Measure optical density every hour. (If the optical density is over 1.0, dilute the cell medium to 1/5.)

4.2.3. Chloramphenicol-dependent Growth Assay with ssrA tag

-samples
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#2
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#2

-Procedure
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp (50 microg/mL) and Kan (30 microg/mL) and grow the cells at 37°C until the observed OD590 reaches 0.5.
3. Centrifuge 1 mL of the sample at 5000g, RT for 1 minute.
4. Suspend the pellet in 1 mL of LB containing Amp and Kan.
5. Add 30 microL of suspension in the following medium.
   ①) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (3 microL) + Chloramphenicol (6 microL of 25 microg/mL) + 99.5% ethanol (6 microL)
   ②) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (3 microL) + Chloramphenicol (9 microL of 25 microg/mL) + 99.5% ethanol (3 microL)
   ③) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (3 microL) + Chloramphenicol (12 microL of 25 microg/mL)
6. Grow the samples of cells at 37°C for more than 8 hours.
7. Measure the optical density every hour. (If the optical density is over 0.9, dilute the cell medium to 1/5.)

4.2.4. C4HSL-dependent CmR expression assay ([Cm] = 75 microg/mL)

-Samples
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#2
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#2

-Procedure
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp (50 microg/mL) and Kan (30 microg/mL) and grow the cells at 37°C until the observed OD590 reaches 0.5.
3. Centrifuge 1 mL of the sample at 5000g, RT for 1 minute.
4. Suspend the pellet in 1mL of LB containing Amp and Kan.
5. Add 30 microL of suspension in the following medium.
   ①) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + 50 microM C4HSL (30 microL) + Chloramphenicol (75 microg/mL)
   ②) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (30 microL) + Chloramphenicol (75 microg/mL)
6. Grow the samples of cells at 37°C for more than 8 hours.
7. Measure optical density every hour. (If the optical density is over 0.9, dilute the cell medium to 1/5.)

6. Reference

      

1. Bo Hu et al. (2010) An Environment-Sensitive Synthetic Microbial Ecosystem. PLoS ONE 5(5): e10619