Difference between revisions of "Team:Tokyo Tech/Experiment/C4HSL-dependent growth assay"

 
(71 intermediate revisions by 2 users not shown)
Line 14: Line 14:
 
   <body>
 
   <body>
 
     <div id="titlearea">
 
     <div id="titlearea">
       <h1>FimB dependent <i>fim</i> switch state_assay</h1>
+
       <h1>C4HSL-dependent CmR expression</h1>
 
     </div>
 
     </div>
 
     <div id="titlebottom">
 
     <div id="titlebottom">
    <h4 class="subtitle"><strong>We have characterized previous parts.</strong></h4>
 
 
     </div>
 
     </div>
 
   <div class="texttop">
 
   <div class="texttop">
Line 26: Line 25:
 
       <h3 class="link"><a href="#Introduction">1. Introduction</a></h3>
 
       <h3 class="link"><a href="#Introduction">1. Introduction</a></h3>
 
       <h3 class="link"><a href="#Summary">2. Summary of the Experiment</a></h3>
 
       <h3 class="link"><a href="#Summary">2. Summary of the Experiment</a></h3>
 +
      <h3 class="link2"><a href="#Summary1">2.1. C4HSL-dependent CmR expression</a></h3>
 +
      <h3 class="link2"><a href="#Summary2">2.2. Insertion of an ssrA degradation tag to CmR</a></h3>
 +
      <h3 class="link2"><a href="#Summary3">2.3. Realizing the payoff matrix</a></h3>
 +
        <h3 class="link3"><a href="#Summary31">2.3.1. Determining the ideal Cm Concentration</a></h3>
 +
        <h3 class="link3"><a href="#Summary32">2.3.2. Payoff matrix with the lower Cm Concentration</a></h3>
 
       <h3 class="link"><a href="#Results">3. Results</a></h3>
 
       <h3 class="link"><a href="#Results">3. Results</a></h3>
 
       <h3 class="link2"><a href="#Result1">3.1. Arabinose dependent FimE expression</a></h3>
 
       <h3 class="link2"><a href="#Result1">3.1. Arabinose dependent FimE expression</a></h3>
       <h3 class="link2"><a href="#Result2">3.2. FLA analysis</a></h3>
+
       <h3 class="link2"><a href="#Result2">3.2. FLA analysis</a></h3>            
       <h3 class="link"><a href="#Discussion">4. Materials and Methods</a></h3>              
+
       <h3 class="link"><a href="#Materials">4. Materials and Methods</a></h3>
      <h3 class="link"><a href="#Materials">5. Materials and Methods</a></h3>
+
      <h3 class="link2"><a href="#Const">4.1.  Construction</a></h3>
       <h3 class="link2"><a href="#Const">5.1. Construction</a></h3>
+
       <h3 class="link2"><a href="#Protocol">4.2. Assay Protocol</a></h3>
      <h3 class="link2"><a href="#Protocol">5.2. Assay Protocol</a></h3>
+
        <h3 class="link3"><a href="#Protol1">4.2.1. C4HSL-dependent CmR expression assay</a></h3>
         <h3 class="link3"><a href="#Protol1">5.2.1 Arabinose dependent FimE expression</a></h3>
+
         <h3 class="link3"><a href="#Protol2">4.2.2. C4HSL-dependent CmR expression assay (With an ssrA tag)</a></h3>
         <h3 class="link3"><a href="#Protol2">5.2.2. FLA analysis</a></h3>
+
         <h3 class="link3"><a href="#Protol3">4.2.3. Chloramphenicol-dependent Growth Assay with ssrA tag</a></h3>
       <h3 class="link"><a href="#Reference">6. Reference</a></h3>
+
        <h3 class="link3"><a href="#Protol4">4.2.4. C4HSL-dependent CmR expression assay ([Cm] = 75 microg/mL)</a></h3>
 +
       <h3 class="link"><a href="#Reference">5. Reference</a></h3>
 
       <br>
 
       <br>
 
     </div>
 
     </div>
Line 46: Line 51:
 
   <div class="textarea">
 
   <div class="textarea">
 
           <h2 id="Introduction" class="smalltitle">1. Introduction</h2>
 
           <h2 id="Introduction" class="smalltitle">1. Introduction</h2>
      <p class="text">We decided that the <i>fim</i> switch, which the promoter containing repeated DNA sequence can be inverted back and forth at random in the presence of FimB recombinase, is the part we need in order to enable the prisoner <i>coli</i> to make the option between cooperation and defection (Fig. 3-4-1-1).</p>
+
      <p class="text"></p>
 +
           <h2 id="Summary" class="smalltitle">2. Summary of the Experiment</h2>
 +
              <h3 id="Summary1" class="sub5">2.1. C4HSL-dependent CmR expression</h3>
 
          <table width="940 px" border="0px">
 
          <table width="940 px" border="0px">
 
       <tr>
 
       <tr>
       <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/e/ee/Tokyo_Tech_fimB_summary.png" width="450px"/>
+
       <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/3/36/Tokyo_Tech_c4HSL_summary2.png" width="600px"/>
 
       </td>
 
       </td>
 
       </tr>
 
       </tr>
 
       <tr>
 
       <tr>
 
       <td width="940px">
 
       <td width="940px">
       <h4 align="center" class="fig"><strong>Fig.&nbsp;3-4-1-1.</strong>&nbsp;In the presence of FimB recombinase, the <i>fim</i> switch which is a promoter containing repeated DNA sequence, is invert at random. </h4>
+
       <h4 align="center" class="fig"><strong>Fig.&nbsp;3-1-2-1.</strong>&nbsp;C4HSL-dependent CmR expression</h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
 
       </table>
 
       </table>
      <p class="text">To confirm the function of the newly constructed plasmid, P<sub>BAD/<i>araC</i></sub>_<i>fimB</i> (<a href="http://parts.igem.org/Part:BBa_K1632012">BBa_K1632012</a>), we also constructed two new plasmids, <a href"http://parts.igem.org/Part:BBa_K1632007">BBa_K1632007</a> and <a href="http://parts.igem.org/Part:BBa_K1632008">BBa_K1632008</a> (Fig. 3-4-1-2).<a href="http://parts.igem.org/Part:BBa_K1632012">BBa_K1632012</a> enables arabinose-inducible expression of FimB (wild-type). In <a href="http://parts.igem.org/Part:BBa_K1632007">BBa_K1632007</a> and <a href="http://parts.igem.org/Part:BBa_K1632008">BBa_K1632008</a>, either the <i>fim</i> switch [default ON] or the <i>fim</i> switch [default OFF] is placed upstream of the GFP coding sequence. </p>  
+
                <p class="text2">We confirmed the function of C4HSL-dependent CmR expression by measuring the optical density of the cultures containing chloramphenicol (Cm) (Fig. 3-1-2-1.). In this experiment we prepared four cells which contain different sets of plasmids, (1), (2), (3), and (4) (Fig. 3-1-2-2.). C4HSL and chloramphenicol was added into the medium containing the cells. The optical density was measured every hour for eight hours to estimate the concentration of the cell. (1), and (2) are the cooperating and defecting prisoner <i>coli</i> A, respectively. (3), and (4) are the negative control for (1), and (2), respectively.</p>
 +
 
 +
 
 
          <table width="940 px" border="0px">
 
          <table width="940 px" border="0px">
 
       <tr>
 
       <tr>
       <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/8/8e/Tokyo_Tech_fimB_summary1.png" />
+
       <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/2/21/Tokyo_Tech_c4HSLsummary4.png" width="450px"/>
 
       </td>
 
       </td>
 
       </tr>
 
       </tr>
 
       <tr>
 
       <tr>
 
       <td width="940px">
 
       <td width="940px">
       <h4 align="center" class="fig"><strong>Fig.3-4-1-2.</strong>&nbsp;New plasmids we constructed to confirm the function of the <i>fim</i> switch in the presence of FimB</h4>
+
       <h4 align="center" class="fig"><strong>Fig.&nbsp;3-1-2-2.</strong>&nbsp;Plasmids for the experiment of C4HSL-dependent CmR expression</h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
 
       </table>
 
       </table>
 
+
              <h3 id="Summary2" class="sub5">2.2. Insertion of an ssrA degradation tag to CmR</h3>
 
+
                <p class="text2">At the first stage of wet experiment, Prisoner cell A and B, which are the initially designed circuits showed leaky expression of CmR. Cells showed active growth even in the absence of AHL when the cell harboring the pairs of plasmids (1) and (2) in Prisoner <i>coli</i> A (Fig. 3-1-2-2.). As a result of our modeling, the influence of the leakage was not reduced by increasing the Cm concentration, which was one of our solutions. (link to modelingリンクさせる!!)<br>&nbsp;&nbsp;
          <h2 id="Summary" class="smalltitle">2. Summary of the Experiment</h2>
+
For precise implementation of our payoff matrix, suggestions from modeling (link to modelingリンクさせる!!) allowed us to successfully solve the influence of the leakage by adding an ssrA tag right after the CmR gene (Pcon_<i>rhlR</i>_TT_Plux_CmRssrA, <a href="http://parts.igem.org/Part:BBa_K1632023">BBa_K1632023</a>) (Fig. 3-1-2-3.). Protein with an ssrA tag is easily degraded by ClpXP and ClpAP that <i>E.coli</i> originally have. The optical density was measured every hour for eight hours to estimate the growth of the Prisoner <i>coli</i> with the improved parts (Pcon_<i>rhlR</i>_TT_Plux_CmRssrA).
      <p class="text">Our purpose is to confirm that FimB inverts fimswitch from ON to OFF and OFF to ON (図の番号). Taking endogenous FimB and FimE into account, we prepared six plasmids sets shown in below(図の番号). We measured the fluorescence intensity by GFP expression when we added arabinose. また、我々はFimSが本当に反転しているかどうかを確認するために、FLAを使った解析とシークエンスデータの解析を行った。</p>
+
</p><br>
    <table width="940 px" border="0px">
+
          <table width="940 px" border="0px">
 
       <tr>
 
       <tr>
       <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/d/dd/Tokyo_Tech_arabinosefimB.png" width="800px" />
+
       <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/c/c8/Tokyo_Tech_c4HSL_summary5.png" width="400px"/>
 
       </td>
 
       </td>
 
       </tr>
 
       </tr>
 
       <tr>
 
       <tr>
 
       <td width="940px">
 
       <td width="940px">
       <h4 align="center" class="fig"><strong>Fig.3-4-2-1.</strong>&nbsp;Plasmids for the experiment of FimB dependent fim switch state assay</h4>
+
       <h4 align="center" class="fig"><strong>Fig.&nbsp;3-1-2-3.</strong>&nbsp; The improved parts, <a href="http://parts.igem.org/Part:BBa_K1632023">BBa_K1632023</a>, we constructed</h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
       </table>
+
       </table><br>
 +
          <table width="940 px" border="0px">
 +
      <tr>
 +
      <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/3/36/Tokyo_Tech_c4HSL_summary6.png" width="400px"/>
 +
      </td>
 +
      </tr>
 +
      <tr>
 +
      <td width="940px">
 +
      <h4 align="center" class="fig"><strong>Fig.&nbsp;3-1-2-4.</strong>&nbsp;Cells for the experiment to measure C4HSL-dependent CmR expression</h4>
 +
      <td>
 +
      </tr>
 +
      </table><br>
  
  
Line 91: Line 111:
  
  
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
              <h3 id="Summary3" class="sub5">2.3. Realizing the payoff matrix</h3>
 +
              <h3 id="Summary31" class="sub6">2.3.1. Determining the ideal Cm Concentration</h3>
 +
                <p class="text3">Using the improved plasmid we constructed, our <i>E.coli</i> version payoff matrix was replicated through wet experiments. The order of the ODs were as expected. (もしくは We tried to realize the payoff matrix.)  However, from the results, the difference between “middle” and “high” growth inhibition was hardly observable. <br>&nbsp;&nbsp;&nbsp;
 +
The growth rate of the Prisoner cells (5) and (6), grown in different Cm concentration (50, 75, 100microg/mL) without C4HSL, were observed. (refer protocol 4-2-3)
 +
</p>
 +
              <h3 id="Summary32" class="sub6">2.3.2. Payoff matrix with the lower Cm Concentration</h3>
 +
                <p class="text3">Using the lower Cm concentration (75microg/mL), the growth of the Prisoner cells (5) and (6) were measured to realize the payoff matrix.</p>
  
  
Line 116: Line 153:
 
               <h3 id="Result2" class="sub5">3.2. FLA analysis</h3>
 
               <h3 id="Result2" class="sub5">3.2. FLA analysis</h3>
 
          <p class="text2">写真とシークエンスデータ</p>
 
          <p class="text2">写真とシークエンスデータ</p>
           <h2 id="Discussion" class="smalltitle">4. Discussion</h2>
+
           <h2 id="Materials" class="smalltitle">4. Materials and Methods</h2>
          <p class="text">When FimB concentration increased by increasing arabinose concentration, we confirmed that Fluorescence intensity was decreased in both of ON to OFF and OFF to ON.<br>
+
               <h3 id="Const" class="sub5">4.1.  Construction</h3>
&nbsp;&nbsp;According to [1], increasing switching frequency by increasing FimB expression decrease mean expression because it is enough time for FimB to bind to the inversion sequences and disrupt transcription initiation or elongation.<br>
+
&nbsp;&nbsp;Similar increase dependent on FimB expression was found in control samples(図).  Because FimE expression decreases cell growth rate, decreased dilution rate of proteins including GFP from leaky expression in the cells could slightly increase of fluorescence in a cell.
+
</p>
+
          <h2 id="Materials" class="smalltitle">5. Materials and Methods</h2>
+
               <h3 id="Const" class="sub5">5.1.  Construction</h3>
+
 
               <h3 class="sub5">-Strain</h3>
 
               <h3 class="sub5">-Strain</h3>
 
 
          <p class="text2">All the samples were JM2.300 strain.</p>
 
          <p class="text2">All the samples were JM2.300 strain.</p>
 
               <h3 class="sub5">-Plasmids</h3>
 
               <h3 class="sub5">-Plasmids</h3>
          <p class="text2">1. Pcon_rhlR_TT_Plux_CmR (pSB6A1) + Plac_lasI (pSB3K3)</p>
+
 
 +
 
 +
 
 +
 
 +
 
 +
          <p class="text2">(1) Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1) + Plac_lasI (pSB3K3)</p>
 
                 <table width="980 px" border="0px">
 
                 <table width="980 px" border="0px">
 
                   <tr>
 
                   <tr>
                   <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/e/e0/Tokyo_Tech_Pcon_rhlR_TT_CmR_Plac_lasI.png"/>
+
                   <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/b/be/Tokyo_Tech_Pcon_rhlR_TT_Plux_CmRssrA_Plac_lasI.png"/>
 
       </td>
 
       </td>
 
       </tr>
 
       </tr>
 
       <tr>
 
       <tr>
 
       <td width="980px">
 
       <td width="980px">
       <h4 align="center" class="fig"><strong>Fig. 3-2-5-1.</strong></h4>
+
       <h4 align="center" class="fig"><strong>Fig. 3-1-4-1.</strong></h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
 
       </table>
 
       </table>
          <p class="text2">2. Pcon_rhlR_TT_Plux_CmR (pSB6A1) +promoter less_lasI (pSB3K3)</p>
+
          <p class="text2">(2) Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1) +promoter less_lasI (pSB3K3)</p>
 
                 <table width="980 px" border="0px">
 
                 <table width="980 px" border="0px">
 
                   <tr>
 
                   <tr>
                   <td width="980px"><div align="center"><img src=""/>
+
                   <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/2/24/Tokyo_Tech_Pcon_rhlR_TT_Plux_CmRssrA_lasI.png"/>
 
       </td>
 
       </td>
 
       </tr>
 
       </tr>
 
       <tr>
 
       <tr>
 
       <td width="980px">
 
       <td width="980px">
       <h4 align="center" class="fig"><strong>Fig. 3-4-5-2.</strong></h4>
+
       <h4 align="center" class="fig"><strong>Fig. 3-1-4-2.</strong></h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
 
       </table>
 
       </table>
          <p class="text2">C. Posigive control1:(pSB6A1)+ <i>fim</i> switch[default ON](wild-type)_<i>gfp</i>(pSB3K3)</p>
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
          <p class="text2">(3) Pcon_rhlR_TT_Plux_CmR (pSB6A1) + Plac_lasI (pSB3K3)</p>
 
                 <table width="980 px" border="0px">
 
                 <table width="980 px" border="0px">
 
                   <tr>
 
                   <tr>
                   <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/0/07/Tokyo_Tech_cysE_fimswitchon.png"/>
+
                   <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/e/e0/Tokyo_Tech_Pcon_rhlR_TT_CmR_Plac_lasI.png"/>
 
       </td>
 
       </td>
 
       </tr>
 
       </tr>
 
       <tr>
 
       <tr>
 
       <td width="980px">
 
       <td width="980px">
       <h4 align="center" class="fig"><strong>Fig. 3-4-5-3.</strong></h4>
+
       <h4 align="center" class="fig"><strong>Fig. 3-1-4-3.</strong></h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
 
       </table>
 
       </table>
          <p class="text2">D. Negative control2: (pSB6A1)+ <i>fim</i> switch[default OFF](wild-type)_<i>gfp</i>(pSB3K3)</p>
+
          <p class="text2">(4) Pcon_rhlR_TT_Plux_CmR (pSB6A1) +promoter less_lasI (pSB3K3)</p>
 
                 <table width="980 px" border="0px">
 
                 <table width="980 px" border="0px">
 
                   <tr>
 
                   <tr>
                   <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/8/89/Tokyo_Tech_cysE_fimswitchoff.png"/>
+
                   <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/3/30/Tokyo_Tech_Pcon_rhlR_TT_Plux_CmR_lasI.png"/>
 
       </td>
 
       </td>
 
       </tr>
 
       </tr>
 
       <tr>
 
       <tr>
 
       <td width="980px">
 
       <td width="980px">
       <h4 align="center" class="fig"><strong>Fig. 3-4-5-4.</strong></h4>
+
       <h4 align="center" class="fig"><strong>Fig. 3-1-4-4.</strong></h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
 
       </table>
 
       </table>
          <p class="text2">E. Pbad/araC-<i>fimB</i> (pSB6A1) +J23119 promoter_<i>gfp</i> (pSB3K3)…Positive control2</p>
+
          <p class="text2">(5) Negative control1: Pcon_rhlR_TT_promoter less_CmR (pSB6A1) + Plac_lasI (pSB3K3)</p>
 
                 <table width="980 px" border="0px">
 
                 <table width="980 px" border="0px">
 
                   <tr>
 
                   <tr>
                   <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/7/79/Tokyo_Tech_PBAD_fimB_J23119_gfp.png"/>
+
                   <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/e/eb/Tokyo_Tech_Pcon_rhlR_TT_CmR_Plac_lasI.2png.png"/>
 
       </td>
 
       </td>
 
       </tr>
 
       </tr>
 
       <tr>
 
       <tr>
 
       <td width="980px">
 
       <td width="980px">
       <h4 align="center" class="fig"><strong>Fig. 3-4-5-5.</strong></h4>
+
       <h4 align="center" class="fig"><strong>Fig. 3-1-4-5.</strong></h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
 
       </table>
 
       </table>
          <p class="text2">F. Pbad/araC-<i>fimB</i> (pSB6A1) +promoter less <i>gfp</i> (pSB3K3)…Negative control2</p>
+
          <p class="text2">(6) Negative cotrol2:Pcon_rhlR_TT_promoter less_CmR (pSB6A1) +promoter less_lasI (pSB3K3)</p>
 
                 <table width="980 px" border="0px">
 
                 <table width="980 px" border="0px">
 
                   <tr>
 
                   <tr>
                   <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/4/42/Tokyo_Tech_PBAD_fimB_gfp.png"/>
+
                   <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/4/45/Tokyo_Tech_Pcon_rhlR_TT_CmR_lasI.png"/>
 
       </td>
 
       </td>
 
       </tr>
 
       </tr>
 
       <tr>
 
       <tr>
 
       <td width="980px">
 
       <td width="980px">
       <h4 align="center" class="fig"><strong>Fig. 3-4-5-6.</strong></h4>
+
       <h4 align="center" class="fig"><strong>Fig. 3-1-4-6.</strong></h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
 
       </table>
 
       </table>
               <h3 id="Protocol" class="sub5">5.2. Assay Protocol</h3>
+
               <h3 id="Protocol" class="sub5">4.2. Assay Protocol</h3>
               <h3 id="Protol1" class="sub6">5.2.1. Arabinose dependent FimB expression</h3>
+
               <h3 id="Protol1" class="sub6">4.2.1. C4HSL-dependent CmR expression assay</h3>
                <p class="text2"></p>
+
                  <p class="text3"></p>
+
                    <p class="text4">
+
1. Prepare overnight cultures for the each sample in 3 mL of LB medium containing ampicillin (50 microg / mL), kanamycin (30 microg / mL) and glucose (final concentration of mass of glucose is 0.5 percent) at 37 ℃ for 12h.<br>
+
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp, Kan and glucose (final concentration of mass of glucose is 0.5 percent).<br>
+
3. Grow the cells at 37 ℃ until the observed OD590 reaches 0.4 (Fresh Culture)<br>
+
4. After incubation, take 1 mL of the samples, and centrifuge at 5000x g, 1 min, 25 ℃.<br>
+
5. Remove the supernatant by using P1000 pipette.<br>
+
6. Suspend the pellet in 1 mL of LB containing Amp and Kan, and centrifuge at 5000x g, 1 min, 25 ℃ <br>
+
7. Remove the supernatant by using P1000 pipette.<br>
+
8. Take the samples, and centrifuge at 5000x g, 1 min, 25 ℃.<br>
+
9. Remove the supernatant by using P1000 pipette.<br>
+
10. Add 1 mL of LB containing Amp and Kan, and suspend.<br>
+
11. Add 30 microL of suspension in the following medium.<br>
+
&nbsp;&nbsp;&nbsp;① 3 mL of LB containing Amp, Kan, glucose (final concentration of mass of glucose is 0.5 percent) and 30 microL of sterile water.<br>
+
&nbsp;&nbsp;&nbsp;② 3 mL of LB containing Amp, Kan and 30 microL of 2 mM arabinose (final concentration of arabinose is 20 microM)<br>
+
&nbsp;&nbsp;&nbsp;③ 3 mL of LB containing Amp, Kan and 30 microL of 20 mM arabinose (final concentration of arabinose is 200 microM)<br>
+
&nbsp;&nbsp;&nbsp;④ 3 mL of LB containing Amp, Kan and 30 microL of 500 mM arabinose (final concentration of arabinose is 5 mM)<br>
+
&nbsp;&nbsp;&nbsp;※ As for C and D, the suspension were added only in medium ① and ④. <br>
+
12. Grow the samples at 37 ℃ for 6.5 hours.<br>
+
13. Measure OD590 of all the samples every hour.<br>
+
14. Start preparing the flow cytometer 1 h before the end of incubation.<br>
+
15. After the incubation, take the samples, and centrifuge at 9000x g, 1min, 4℃.<br>
+
16. Remove the supernatant by using P1000 pipette.<br>
+
17. Add 1 mL of filtered PBS (phosphate-buffered saline) and suspend. (The ideal of OD is 0.3)<br>
+
18. Dispense all of each suspension into a disposable tube through a cell strainer.<br>
+
19. Use flow cytometer to measure the fluorescence of GFP. (We used BD FACSCaliburTM Flow Cytometer of Becton, Dickenson and Company.)<br>
+
              <h3 id="Protol2" class="sub6">5.2.2. FLA analysis</h3>
+
                <p class="text2"></p>
+
                  <p class="text3"></p>
+
 
                     <p class="text4">
 
                     <p class="text4">
 +
<strong>-samples</strong><br>
 +
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#1<br>
 +
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#2<br>
 +
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+ promoter less_lasI (pSB3K3)#1<br>
 +
Pcon_rhlR_TT_Plux_CmR (pSB6A1) + promoter less_lasI (pSB3K3)#2<br>
 +
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+Plac_lasI (pSB3K3)#1<br>
 +
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+Plac_lasI (pSB3K3)#2<br>
 +
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#1<br>
 +
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#2<br>
 +
</p>
 +
                    <p class="text4"><br>
 +
<strong>-Procedure</strong><br>
 +
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.<br>
 +
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp (50 microg/mL) and Kan (30 microg/mL) and grow the cells at 37°C until the observed OD590 reaches 0.5.<br>
 +
3. Centrifuge 1 mL of the sample at 5000g, RT for 1 minute.<br>
 +
4. Suspend the pellet in 1mL of LB containing Amp and Kan.<br>
 +
5. Add 30 microL of suspension in the following medium.<br>
 +
&nbsp;&nbsp;&nbsp;①)LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + 50 microM C4HSL (30 microL) + Chloramphenicol (3 microL of 100 microg/mL)<br>
 +
&nbsp;&nbsp;&nbsp;②)LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (30 microL) + Chloramphenicol (3 microL of 100 microg/mL)<br>
 +
6. Grow the samples of cells at 37°C for more than 8 hours.<br>
 +
7. Measure optical density every hour. (If the optical density is over 1.0, dilute the cell medium to 1/5.)<br><br>
  
1. After the assay of “Arabinose dependent FimE expression”, miniprep cell culture (A,B,
+
              <h3 id="Protol2" class="sub6">4.2.2. C4HSL-dependent CmR expression assay (With an ssrA tag)</h3>
,C and D) of leftover as here.(http://parts.igem.org/Help:Protocols/Miniprep) <br>
+
                    <p class="text4">
2. Turn on water bath to 42℃.<br>
+
<strong>-samples</strong><br>
3. Take competent DH5alpha strain from -80℃ freezer and leave at rest on ice.<br>
+
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#1<br>
4. Add 3 µl of each plasmids in a 1.5 ml tube.<br>
+
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#2<br>
5. Put 25 µl competent cell into each 1.5 ml tubes with plasmid.<br>
+
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#1<br>
6. Incubate on ice for 15 min.<br>
+
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#2<br>
7. Put tubes with DNA and competent cells into water bath at 42℃ for 30 seconds.<br>
+
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#1<br>
8. Put tubes back on ice for 2 minutes.<br>
+
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#2<br>
9. Add 125 µl of SOC medium. Incubate tubes for 30 minutes at 37℃.<br>
+
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#1<br>
10. Make a 1:5 dilution in 150µl of fresh SOC medium.<br>
+
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#2<br>
11. Spread about 100 µl of the resulting culture of LB plate containing kanamycin.<br>
+
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+Plac_lasI (pSB3K3)#1<br>
12. Incubate LB plate for 14-15 hours at 37℃. <br></p>
+
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+Plac_lasI (pSB3K3)#2<br>
 
+
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+promoter less_lasI (pSB3K3)#1<br>
                 
+
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+promoter less_lasI (pSB3K3)#2<br>
 +
<br>
 +
<strong>-Procedure</strong><br>
 +
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.<br>
 +
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp (50 microg/mL) and Kan (30 microg/mL) and grow the cells at 37°C until the observed OD590 reaches 0.5.<br>
 +
3. Centrifuge 1 mL of the sample at 5000g, RT for 1 minute.<br>
 +
4. Suspend the pellet in 1mL of LB containing Amp and Kan.<br>
 +
5. Add 30 microL of suspension in the following medium.<br>
 +
&nbsp;&nbsp;&nbsp;①)LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + 50 microM C4HSL (30 microL) + Chloramphenicol (3 microL of 100 microg/mL)<br>
 +
&nbsp;&nbsp;&nbsp;②)LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (30 microL) + Chloramphenicol (3 microL of 100 microg/mL)<br>
 +
6. Grow the samples of cells at 37°C for more than 8 hours.<br>
 +
7. Measure optical density every hour. (If the optical density is over 1.0, dilute the cell medium to 1/5.)<br></p>
 +
              <h3 id="Protol3" class="sub6">4.2.3. Chloramphenicol-dependent Growth Assay with ssrA tag</h3>
 +
                    <p class="text4">
 +
<strong>-samples</strong><br>
 +
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#1<br>
 +
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#2<br>
 +
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#1<br>
 +
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#2<br>
 +
<br><strong>-Procedure</strong><br>
 +
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.<br>
 +
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp (50 microg/mL) and Kan (30 microg/mL) and grow the cells at 37°C until the observed OD590 reaches 0.5.<br>
 +
3. Centrifuge 1 mL of the sample at 5000g, RT for 1 minute.<br>
 +
4. Suspend the pellet in 1 mL of LB containing Amp and Kan.<br>
 +
5. Add 30 microL of suspension in the following medium.<br>
 +
&nbsp;&nbsp;&nbsp;①) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (3 microL) + Chloramphenicol (6 microL of 25 microg/mL) + 99.5% ethanol (6 microL)<br>
 +
&nbsp;&nbsp;&nbsp;②) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (3 microL) + Chloramphenicol (9 microL of 25 microg/mL) + 99.5% ethanol (3 microL)<br>
 +
&nbsp;&nbsp;&nbsp;③) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (3 microL) + Chloramphenicol (12 microL of 25 microg/mL)<br>
 +
6. Grow the samples of cells at 37°C for more than 8 hours.<br>
 +
7. Measure the optical density every hour. (If the optical density is over 0.9, dilute the cell medium to 1/5.)<br>
 +
              <h3 id="Protol4" class="sub6">4.2.4. C4HSL-dependent CmR expression assay ([Cm] = 75 microg/mL)</h3>
 +
                    <p class="text4">
 +
<strong>-Samples</strong><br>
 +
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#1<br>
 +
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#2<br>
 +
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#1<br>
 +
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#2<br>
 +
<br><strong>-Procedure</strong><br>
 +
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.<br>
 +
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp (50 microg/mL) and Kan (30 microg/mL) and grow the cells at 37°C until the observed OD590 reaches 0.5.<br>
 +
3. Centrifuge 1 mL of the sample at 5000g, RT for 1 minute.<br>
 +
4. Suspend the pellet in 1mL of LB containing Amp and Kan.<br>
 +
5. Add 30 microL of suspension in the following medium.<br>
 +
&nbsp;&nbsp;&nbsp;①) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + 50 microM C4HSL (30 microL) + Chloramphenicol (75 microg/mL)<br>
 +
&nbsp;&nbsp;&nbsp;②) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (30 microL) + Chloramphenicol (75 microg/mL)<br>
 +
6. Grow the samples of cells at 37°C for more than 8 hours.<br>
 +
7. Measure optical density every hour. (If the optical density is over 0.9, dilute the cell medium to 1/5.)<br>
 
           <h2 id="Reference" class="smalltitle">6. Reference</h2>
 
           <h2 id="Reference" class="smalltitle">6. Reference</h2>
 
      <p class="text">1. Bo Hu <em>et al.</em> (2010) An Environment-Sensitive Synthetic Microbial Ecosystem. PLoS ONE 5(5): e10619</p>
 
      <p class="text">1. Bo Hu <em>et al.</em> (2010) An Environment-Sensitive Synthetic Microbial Ecosystem. PLoS ONE 5(5): e10619</p>

Latest revision as of 07:43, 18 September 2015

C4HSL-dependent CmR expression

  
  

1. Introduction

      

   

2. Summary of the Experiment

2.1. C4HSL-dependent CmR expression

      

Fig. 3-1-2-1. C4HSL-dependent CmR expression

We confirmed the function of C4HSL-dependent CmR expression by measuring the optical density of the cultures containing chloramphenicol (Cm) (Fig. 3-1-2-1.). In this experiment we prepared four cells which contain different sets of plasmids, (1), (2), (3), and (4) (Fig. 3-1-2-2.). C4HSL and chloramphenicol was added into the medium containing the cells. The optical density was measured every hour for eight hours to estimate the concentration of the cell. (1), and (2) are the cooperating and defecting prisoner coli A, respectively. (3), and (4) are the negative control for (1), and (2), respectively.

      

Fig. 3-1-2-2. Plasmids for the experiment of C4HSL-dependent CmR expression

2.2. Insertion of an ssrA degradation tag to CmR

At the first stage of wet experiment, Prisoner cell A and B, which are the initially designed circuits showed leaky expression of CmR. Cells showed active growth even in the absence of AHL when the cell harboring the pairs of plasmids (1) and (2) in Prisoner coli A (Fig. 3-1-2-2.). As a result of our modeling, the influence of the leakage was not reduced by increasing the Cm concentration, which was one of our solutions. (link to modelingリンクさせる!!)
   For precise implementation of our payoff matrix, suggestions from modeling (link to modelingリンクさせる!!) allowed us to successfully solve the influence of the leakage by adding an ssrA tag right after the CmR gene (Pcon_rhlR_TT_Plux_CmRssrA, BBa_K1632023) (Fig. 3-1-2-3.). Protein with an ssrA tag is easily degraded by ClpXP and ClpAP that E.coli originally have. The optical density was measured every hour for eight hours to estimate the growth of the Prisoner coli with the improved parts (Pcon_rhlR_TT_Plux_CmRssrA).


      

Fig. 3-1-2-3.  The improved parts, BBa_K1632023, we constructed


      

Fig. 3-1-2-4. Cells for the experiment to measure C4HSL-dependent CmR expression


2.3. Realizing the payoff matrix

2.3.1. Determining the ideal Cm Concentration

Using the improved plasmid we constructed, our E.coli version payoff matrix was replicated through wet experiments. The order of the ODs were as expected. (もしくは We tried to realize the payoff matrix.) However, from the results, the difference between “middle” and “high” growth inhibition was hardly observable.
    The growth rate of the Prisoner cells (5) and (6), grown in different Cm concentration (50, 75, 100microg/mL) without C4HSL, were observed. (refer protocol 4-2-3)

2.3.2. Payoff matrix with the lower Cm Concentration

Using the lower Cm concentration (75microg/mL), the growth of the Prisoner cells (5) and (6) were measured to realize the payoff matrix.

3. Results

3.1. Arabinose dependent FimE expression

      

私たちは、4種類のarabinose濃度でFimBが働くかどうかを、GFPを用いたレポーターアッセイによって確かめた。  Figure(図番号) は、default ONのサンプルが、arabinose誘導によって、OFF状態に切り替わった結果を示している。 またFigure(図番号)は、default OFFのサンプルが、arabinose誘導によって、ON状態に切り替わった結果を示している。 Figure(図番号) shows our experimental results of FimB and Fimswitch. From the results of the reporter cell C and D, inversion from ON to OFF and OFF to ON by endogenous proteins are negligible. レポーターセルE,Fの結果から、FImEの発現はヒストグラムの波形にほとんど影響を与えないことがわかる。 以上の2つの結果から、FimBが理想的に両反転を起こしていることがわかる。

Fig. 3-4-3-1.

3.2. FLA analysis

      

写真とシークエンスデータ

4. Materials and Methods

4.1. Construction

-Strain

      

All the samples were JM2.300 strain.

-Plasmids

      

(1) Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1) + Plac_lasI (pSB3K3)

Fig. 3-1-4-1.

      

(2) Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1) +promoter less_lasI (pSB3K3)

Fig. 3-1-4-2.

      

(3) Pcon_rhlR_TT_Plux_CmR (pSB6A1) + Plac_lasI (pSB3K3)

Fig. 3-1-4-3.

      

(4) Pcon_rhlR_TT_Plux_CmR (pSB6A1) +promoter less_lasI (pSB3K3)

Fig. 3-1-4-4.

      

(5) Negative control1: Pcon_rhlR_TT_promoter less_CmR (pSB6A1) + Plac_lasI (pSB3K3)

Fig. 3-1-4-5.

      

(6) Negative cotrol2:Pcon_rhlR_TT_promoter less_CmR (pSB6A1) +promoter less_lasI (pSB3K3)

Fig. 3-1-4-6.

4.2. Assay Protocol

4.2.1. C4HSL-dependent CmR expression assay

-samples
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#2
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+ promoter less_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmR (pSB6A1) + promoter less_lasI (pSB3K3)#2
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+Plac_lasI (pSB3K3)#1
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+Plac_lasI (pSB3K3)#2
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#1
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#2


-Procedure
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp (50 microg/mL) and Kan (30 microg/mL) and grow the cells at 37°C until the observed OD590 reaches 0.5.
3. Centrifuge 1 mL of the sample at 5000g, RT for 1 minute.
4. Suspend the pellet in 1mL of LB containing Amp and Kan.
5. Add 30 microL of suspension in the following medium.
   ①)LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + 50 microM C4HSL (30 microL) + Chloramphenicol (3 microL of 100 microg/mL)
   ②)LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (30 microL) + Chloramphenicol (3 microL of 100 microg/mL)
6. Grow the samples of cells at 37°C for more than 8 hours.
7. Measure optical density every hour. (If the optical density is over 1.0, dilute the cell medium to 1/5.)

4.2.2. C4HSL-dependent CmR expression assay (With an ssrA tag)

-samples
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#2
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#2
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#2
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#2
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+Plac_lasI (pSB3K3)#1
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+Plac_lasI (pSB3K3)#2
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+promoter less_lasI (pSB3K3)#1
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+promoter less_lasI (pSB3K3)#2

-Procedure
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp (50 microg/mL) and Kan (30 microg/mL) and grow the cells at 37°C until the observed OD590 reaches 0.5.
3. Centrifuge 1 mL of the sample at 5000g, RT for 1 minute.
4. Suspend the pellet in 1mL of LB containing Amp and Kan.
5. Add 30 microL of suspension in the following medium.
   ①)LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + 50 microM C4HSL (30 microL) + Chloramphenicol (3 microL of 100 microg/mL)
   ②)LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (30 microL) + Chloramphenicol (3 microL of 100 microg/mL)
6. Grow the samples of cells at 37°C for more than 8 hours.
7. Measure optical density every hour. (If the optical density is over 1.0, dilute the cell medium to 1/5.)

4.2.3. Chloramphenicol-dependent Growth Assay with ssrA tag

-samples
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#2
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#2

-Procedure
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp (50 microg/mL) and Kan (30 microg/mL) and grow the cells at 37°C until the observed OD590 reaches 0.5.
3. Centrifuge 1 mL of the sample at 5000g, RT for 1 minute.
4. Suspend the pellet in 1 mL of LB containing Amp and Kan.
5. Add 30 microL of suspension in the following medium.
   ①) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (3 microL) + Chloramphenicol (6 microL of 25 microg/mL) + 99.5% ethanol (6 microL)
   ②) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (3 microL) + Chloramphenicol (9 microL of 25 microg/mL) + 99.5% ethanol (3 microL)
   ③) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (3 microL) + Chloramphenicol (12 microL of 25 microg/mL)
6. Grow the samples of cells at 37°C for more than 8 hours.
7. Measure the optical density every hour. (If the optical density is over 0.9, dilute the cell medium to 1/5.)

4.2.4. C4HSL-dependent CmR expression assay ([Cm] = 75 microg/mL)

-Samples
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#2
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#2

-Procedure
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp (50 microg/mL) and Kan (30 microg/mL) and grow the cells at 37°C until the observed OD590 reaches 0.5.
3. Centrifuge 1 mL of the sample at 5000g, RT for 1 minute.
4. Suspend the pellet in 1mL of LB containing Amp and Kan.
5. Add 30 microL of suspension in the following medium.
   ①) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + 50 microM C4HSL (30 microL) + Chloramphenicol (75 microg/mL)
   ②) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (30 microL) + Chloramphenicol (75 microg/mL)
6. Grow the samples of cells at 37°C for more than 8 hours.
7. Measure optical density every hour. (If the optical density is over 0.9, dilute the cell medium to 1/5.)

6. Reference

      

1. Bo Hu et al. (2010) An Environment-Sensitive Synthetic Microbial Ecosystem. PLoS ONE 5(5): e10619