Difference between revisions of "Team:Tokyo Tech/Experiment/C4HSL-dependent growth assay"

 
(53 intermediate revisions by 2 users not shown)
Line 14: Line 14:
 
   <body>
 
   <body>
 
     <div id="titlearea">
 
     <div id="titlearea">
       <h1>FimB dependent <i>fim</i> switch state_assay</h1>
+
       <h1>C4HSL-dependent CmR expression</h1>
 
     </div>
 
     </div>
 
     <div id="titlebottom">
 
     <div id="titlebottom">
    <h4 class="subtitle"><strong>We have characterized previous parts.</strong></h4>
 
 
     </div>
 
     </div>
 
   <div class="texttop">
 
   <div class="texttop">
Line 26: Line 25:
 
       <h3 class="link"><a href="#Introduction">1. Introduction</a></h3>
 
       <h3 class="link"><a href="#Introduction">1. Introduction</a></h3>
 
       <h3 class="link"><a href="#Summary">2. Summary of the Experiment</a></h3>
 
       <h3 class="link"><a href="#Summary">2. Summary of the Experiment</a></h3>
 +
      <h3 class="link2"><a href="#Summary1">2.1. C4HSL-dependent CmR expression</a></h3>
 +
      <h3 class="link2"><a href="#Summary2">2.2. Insertion of an ssrA degradation tag to CmR</a></h3>
 +
      <h3 class="link2"><a href="#Summary3">2.3. Realizing the payoff matrix</a></h3>
 +
        <h3 class="link3"><a href="#Summary31">2.3.1. Determining the ideal Cm Concentration</a></h3>
 +
        <h3 class="link3"><a href="#Summary32">2.3.2. Payoff matrix with the lower Cm Concentration</a></h3>
 
       <h3 class="link"><a href="#Results">3. Results</a></h3>
 
       <h3 class="link"><a href="#Results">3. Results</a></h3>
 
       <h3 class="link2"><a href="#Result1">3.1. Arabinose dependent FimE expression</a></h3>
 
       <h3 class="link2"><a href="#Result1">3.1. Arabinose dependent FimE expression</a></h3>
Line 47: Line 51:
 
   <div class="textarea">
 
   <div class="textarea">
 
           <h2 id="Introduction" class="smalltitle">1. Introduction</h2>
 
           <h2 id="Introduction" class="smalltitle">1. Introduction</h2>
      <p class="text">We designed a signal-dependent growth system by using signaling molecules and antibiotic resistance gene. In our prisoner’s dilemma game, our prisoner coli A needs 3OC12HSL to acquire chloramphenicol resistance (CmR).  
+
      <p class="text"></p>
Pcon_rhlR_TT_Plux_CmR (6A1) cell is an engineered E. coli that contains C4HSL-dependent chloramphenicol resistance gene product (CmR) generator and a constitutive RhlR generator. As a constitutive 3OC12HSL production module, we used Plac_lasI (pSB3k3).
+
           <h2 id="Summary" class="smalltitle">2. Summary of the Experiment</h2>
For construction of the C4HSL-dependent chloramphenicol resistance gene product (CmR) and 3OC12HSL production module (Plac_lasI), we constructed an improved parts Pcon_rhlR_TT_Plux_CmRssrA (BBa_K1632023). The C4HSL-dependent growth was confirmed by measuring the optical density.
+
              <h3 id="Summary1" class="sub5">2.1. C4HSL-dependent CmR expression</h3>
</p>
+
 
          <table width="940 px" border="0px">
 
          <table width="940 px" border="0px">
 
       <tr>
 
       <tr>
       <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/e/ee/Tokyo_Tech_fimB_summary.png" width="450px"/>
+
       <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/3/36/Tokyo_Tech_c4HSL_summary2.png" width="600px"/>
 
       </td>
 
       </td>
 
       </tr>
 
       </tr>
 
       <tr>
 
       <tr>
 
       <td width="940px">
 
       <td width="940px">
       <h4 align="center" class="fig"><strong>Fig.&nbsp;3-4-1-1.</strong>&nbsp;In the presence of FimB recombinase, the <i>fim</i> switch which is a promoter containing repeated DNA sequence, is invert at random. </h4>
+
       <h4 align="center" class="fig"><strong>Fig.&nbsp;3-1-2-1.</strong>&nbsp;C4HSL-dependent CmR expression</h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
 
       </table>
 
       </table>
      <p class="text">To confirm the function of the newly constructed plasmid, P<sub>BAD/<i>araC</i></sub>_<i>fimB</i> (<a href="http://parts.igem.org/Part:BBa_K1632012">BBa_K1632012</a>), we also constructed two new plasmids, <a href"http://parts.igem.org/Part:BBa_K1632007">BBa_K1632007</a> and <a href="http://parts.igem.org/Part:BBa_K1632008">BBa_K1632008</a> (Fig. 3-4-1-2).<a href="http://parts.igem.org/Part:BBa_K1632012">BBa_K1632012</a> enables arabinose-inducible expression of FimB (wild-type). In <a href="http://parts.igem.org/Part:BBa_K1632007">BBa_K1632007</a> and <a href="http://parts.igem.org/Part:BBa_K1632008">BBa_K1632008</a>, either the <i>fim</i> switch [default ON] or the <i>fim</i> switch [default OFF] is placed upstream of the GFP coding sequence. </p>  
+
                <p class="text2">We confirmed the function of C4HSL-dependent CmR expression by measuring the optical density of the cultures containing chloramphenicol (Cm) (Fig. 3-1-2-1.). In this experiment we prepared four cells which contain different sets of plasmids, (1), (2), (3), and (4) (Fig. 3-1-2-2.). C4HSL and chloramphenicol was added into the medium containing the cells. The optical density was measured every hour for eight hours to estimate the concentration of the cell. (1), and (2) are the cooperating and defecting prisoner <i>coli</i> A, respectively. (3), and (4) are the negative control for (1), and (2), respectively.</p>
 +
 
 +
 
 
          <table width="940 px" border="0px">
 
          <table width="940 px" border="0px">
 
       <tr>
 
       <tr>
       <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/8/8e/Tokyo_Tech_fimB_summary1.png" />
+
       <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/2/21/Tokyo_Tech_c4HSLsummary4.png" width="450px"/>
 
       </td>
 
       </td>
 
       </tr>
 
       </tr>
 
       <tr>
 
       <tr>
 
       <td width="940px">
 
       <td width="940px">
       <h4 align="center" class="fig"><strong>Fig.3-4-1-2.</strong>&nbsp;New plasmids we constructed to confirm the function of the <i>fim</i> switch in the presence of FimB</h4>
+
       <h4 align="center" class="fig"><strong>Fig.&nbsp;3-1-2-2.</strong>&nbsp;Plasmids for the experiment of C4HSL-dependent CmR expression</h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
 
       </table>
 
       </table>
 
+
              <h3 id="Summary2" class="sub5">2.2. Insertion of an ssrA degradation tag to CmR</h3>
 
+
                <p class="text2">At the first stage of wet experiment, Prisoner cell A and B, which are the initially designed circuits showed leaky expression of CmR. Cells showed active growth even in the absence of AHL when the cell harboring the pairs of plasmids (1) and (2) in Prisoner <i>coli</i> A (Fig. 3-1-2-2.). As a result of our modeling, the influence of the leakage was not reduced by increasing the Cm concentration, which was one of our solutions. (link to modelingリンクさせる!!)<br>&nbsp;&nbsp;
          <h2 id="Summary" class="smalltitle">2. Summary of the Experiment</h2>
+
For precise implementation of our payoff matrix, suggestions from modeling (link to modelingリンクさせる!!) allowed us to successfully solve the influence of the leakage by adding an ssrA tag right after the CmR gene (Pcon_<i>rhlR</i>_TT_Plux_CmRssrA, <a href="http://parts.igem.org/Part:BBa_K1632023">BBa_K1632023</a>) (Fig. 3-1-2-3.). Protein with an ssrA tag is easily degraded by ClpXP and ClpAP that <i>E.coli</i> originally have. The optical density was measured every hour for eight hours to estimate the growth of the Prisoner <i>coli</i> with the improved parts (Pcon_<i>rhlR</i>_TT_Plux_CmRssrA).
      <p class="text">Our purpose is to confirm that FimB inverts fimswitch from ON to OFF and OFF to ON (図の番号). Taking endogenous FimB and FimE into account, we prepared six plasmids sets shown in below(図の番号). We measured the fluorescence intensity by GFP expression when we added arabinose. また、我々はFimSが本当に反転しているかどうかを確認するために、FLAを使った解析とシークエンスデータの解析を行った。</p>
+
</p><br>
    <table width="940 px" border="0px">
+
          <table width="940 px" border="0px">
 
       <tr>
 
       <tr>
       <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/d/dd/Tokyo_Tech_arabinosefimB.png" width="800px" />
+
       <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/c/c8/Tokyo_Tech_c4HSL_summary5.png" width="400px"/>
 
       </td>
 
       </td>
 
       </tr>
 
       </tr>
 
       <tr>
 
       <tr>
 
       <td width="940px">
 
       <td width="940px">
       <h4 align="center" class="fig"><strong>Fig.3-4-2-1.</strong>&nbsp;Plasmids for the experiment of FimB dependent fim switch state assay</h4>
+
       <h4 align="center" class="fig"><strong>Fig.&nbsp;3-1-2-3.</strong>&nbsp; The improved parts, <a href="http://parts.igem.org/Part:BBa_K1632023">BBa_K1632023</a>, we constructed</h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
       </table>
+
       </table><br>
 +
          <table width="940 px" border="0px">
 +
      <tr>
 +
      <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/3/36/Tokyo_Tech_c4HSL_summary6.png" width="400px"/>
 +
      </td>
 +
      </tr>
 +
      <tr>
 +
      <td width="940px">
 +
      <h4 align="center" class="fig"><strong>Fig.&nbsp;3-1-2-4.</strong>&nbsp;Cells for the experiment to measure C4HSL-dependent CmR expression</h4>
 +
      <td>
 +
      </tr>
 +
      </table><br>
  
  
Line 95: Line 111:
  
  
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
              <h3 id="Summary3" class="sub5">2.3. Realizing the payoff matrix</h3>
 +
              <h3 id="Summary31" class="sub6">2.3.1. Determining the ideal Cm Concentration</h3>
 +
                <p class="text3">Using the improved plasmid we constructed, our <i>E.coli</i> version payoff matrix was replicated through wet experiments. The order of the ODs were as expected. (もしくは We tried to realize the payoff matrix.)  However, from the results, the difference between “middle” and “high” growth inhibition was hardly observable. <br>&nbsp;&nbsp;&nbsp;
 +
The growth rate of the Prisoner cells (5) and (6), grown in different Cm concentration (50, 75, 100microg/mL) without C4HSL, were observed. (refer protocol 4-2-3)
 +
</p>
 +
              <h3 id="Summary32" class="sub6">2.3.2. Payoff matrix with the lower Cm Concentration</h3>
 +
                <p class="text3">Using the lower Cm concentration (75microg/mL), the growth of the Prisoner cells (5) and (6) were measured to realize the payoff matrix.</p>
  
  
Line 130: Line 163:
  
  
          <p class="text2">(1) Pcon_rhlR_TT_Plux_CmRssrA(pSB6A1) + Plac_lasI(pSB3K3)</p>
+
          <p class="text2">(1) Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1) + Plac_lasI (pSB3K3)</p>
 
                 <table width="980 px" border="0px">
 
                 <table width="980 px" border="0px">
 
                   <tr>
 
                   <tr>
Line 138: Line 171:
 
       <tr>
 
       <tr>
 
       <td width="980px">
 
       <td width="980px">
       <h4 align="center" class="fig"><strong>Fig. 3-2-4-1.</strong></h4>
+
       <h4 align="center" class="fig"><strong>Fig. 3-1-4-1.</strong></h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
 
       </table>
 
       </table>
          <p class="text2">(2) Pcon_rhlR_TT_Plux_CmRssrA(pSB6A1) +promoter less_lasI(pSB3K3)</p>
+
          <p class="text2">(2) Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1) +promoter less_lasI (pSB3K3)</p>
 
                 <table width="980 px" border="0px">
 
                 <table width="980 px" border="0px">
 
                   <tr>
 
                   <tr>
Line 150: Line 183:
 
       <tr>
 
       <tr>
 
       <td width="980px">
 
       <td width="980px">
       <h4 align="center" class="fig"><strong>Fig. 3-2-4-2.</strong></h4>
+
       <h4 align="center" class="fig"><strong>Fig. 3-1-4-2.</strong></h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
Line 166: Line 199:
  
  
          <p class="text2">(3) Pcon_rhlR_TT_Plux_CmR(pSB6A1) + Plac_lasI(pSB3K3)</p>
+
          <p class="text2">(3) Pcon_rhlR_TT_Plux_CmR (pSB6A1) + Plac_lasI (pSB3K3)</p>
 
                 <table width="980 px" border="0px">
 
                 <table width="980 px" border="0px">
 
                   <tr>
 
                   <tr>
Line 174: Line 207:
 
       <tr>
 
       <tr>
 
       <td width="980px">
 
       <td width="980px">
       <h4 align="center" class="fig"><strong>Fig. 3-2-4-3.</strong></h4>
+
       <h4 align="center" class="fig"><strong>Fig. 3-1-4-3.</strong></h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
 
       </table>
 
       </table>
          <p class="text2">(4) Pcon_rhlR_TT_Plux_CmR(pSB6A1) +promoter less_lasI(pSB3K3)</p>
+
          <p class="text2">(4) Pcon_rhlR_TT_Plux_CmR (pSB6A1) +promoter less_lasI (pSB3K3)</p>
 
                 <table width="980 px" border="0px">
 
                 <table width="980 px" border="0px">
 
                   <tr>
 
                   <tr>
Line 186: Line 219:
 
       <tr>
 
       <tr>
 
       <td width="980px">
 
       <td width="980px">
       <h4 align="center" class="fig"><strong>Fig. 3-2-4-4.</strong></h4>
+
       <h4 align="center" class="fig"><strong>Fig. 3-1-4-4.</strong></h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
Line 198: Line 231:
 
       <tr>
 
       <tr>
 
       <td width="980px">
 
       <td width="980px">
       <h4 align="center" class="fig"><strong>Fig. 3-2-4-5.</strong></h4>
+
       <h4 align="center" class="fig"><strong>Fig. 3-1-4-5.</strong></h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
 
       </table>
 
       </table>
          <p class="text2">(6) Neative cotrol2:Pcon_rhlR_TT_promoter less_CmR (pSB6A1) +promoter less_lasI (pSB3K3)</p>
+
          <p class="text2">(6) Negative cotrol2:Pcon_rhlR_TT_promoter less_CmR (pSB6A1) +promoter less_lasI (pSB3K3)</p>
 
                 <table width="980 px" border="0px">
 
                 <table width="980 px" border="0px">
 
                   <tr>
 
                   <tr>
Line 210: Line 243:
 
       <tr>
 
       <tr>
 
       <td width="980px">
 
       <td width="980px">
       <h4 align="center" class="fig"><strong>Fig. 3-2-4-6.</strong></h4>
+
       <h4 align="center" class="fig"><strong>Fig. 3-1-4-6.</strong></h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
Line 218: Line 251:
 
                     <p class="text4">
 
                     <p class="text4">
 
<strong>-samples</strong><br>  
 
<strong>-samples</strong><br>  
Pcon_rhlR_TT_Plux_CmR(pSB6A1)+Plac_lasI(pSB3K3)#1<br>
+
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#1<br>
Pcon_rhlR_TT_Plux_CmR(pSB6A1)+Plac_lasI(pSB3K3)#2<br>
+
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#2<br>
Pcon_rhlR_TT_Plux_CmR(pB6A1)+ promoter lesslasI(pSB3K3)#1<br>
+
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+ promoter less_lasI (pSB3K3)#1<br>
 
Pcon_rhlR_TT_Plux_CmR (pSB6A1) + promoter less_lasI (pSB3K3)#2<br>
 
Pcon_rhlR_TT_Plux_CmR (pSB6A1) + promoter less_lasI (pSB3K3)#2<br>
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+promoter less_lasI(pSB3K3)#1<br>
+
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+Plac_lasI (pSB3K3)#1<br>
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+promoter less_lasI(pSB3K3)#2<br>
+
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+Plac_lasI (pSB3K3)#2<br>
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+promoter less_lasI(pSB3K3)#1<br>
+
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#1<br>
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+promoter less_lasI(pSB3K3)#2<br>
+
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#2<br>
 
</p>
 
</p>
 
                     <p class="text4"><br>
 
                     <p class="text4"><br>
Line 242: Line 275:
 
                     <p class="text4">
 
                     <p class="text4">
 
<strong>-samples</strong><br>  
 
<strong>-samples</strong><br>  
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI(pSB3k3)#1<br>
+
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#1<br>
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI(pSB3k3)#2<br>
+
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#2<br>
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI(pSB3k3)#1<br>
+
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#1<br>
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI(pSB3k3)#2<br>
+
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#2<br>
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3k3)#1<br>
+
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#1<br>
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI(pSB3k3)#2<br>
+
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#2<br>
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+promoter less_lasI(pSB3k3)#1<br>
+
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#1<br>
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+promoter less_lasI(pSB3k3)#2<br>
+
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#2<br>
Pcon_rhlR_TT_promoter less _CmR(pSB6A1)+Plac_lasI(pSB3k3)#1<br>
+
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+Plac_lasI (pSB3K3)#1<br>
Pcon_rhlR_TT_promoter less _CmR(pSB6A1)+Plac_lasI(pSB3k3)#2<br>
+
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+Plac_lasI (pSB3K3)#2<br>
Pcon_rhlR_TT_promoter less _CmR(pSB6A1)+promoter less_lasI(pSB3k3)#1<br>
+
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+promoter less_lasI (pSB3K3)#1<br>
Pcon_rhlR_TT_promoter less _CmR(pSB6A1)+promoter less_lasI(pSB3k3)#2<br>
+
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+promoter less_lasI (pSB3K3)#2<br>
 
<br>
 
<br>
 
<strong>-Procedure</strong><br>
 
<strong>-Procedure</strong><br>
Line 268: Line 301:
 
                     <p class="text4">
 
                     <p class="text4">
 
<strong>-samples</strong><br>
 
<strong>-samples</strong><br>
Pcon_rhlR_TT_Plux_CmRssrA(pSB6A1)+Plac_lasI(pSB3k3)#1<br>
+
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#1<br>
Pcon_rhlR_TT_Plux_CmRssrA(pSB6A1)+Plac_lasI(pSB3k3)#2<br>
+
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#2<br>
Pcon_rhlR_TT_Plux_CmRssrA(pSB6A1)+promoter less_lasI(pSB3k3)#1<br>
+
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#1<br>
Pcon_rhlR_TT_Plux_CmRssrA(pSB6A1)+promoter less_lasI(pSB3k3)#2<br>
+
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#2<br>
 
<br><strong>-Procedure</strong><br>
 
<br><strong>-Procedure</strong><br>
 
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.<br>
 
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.<br>
Line 285: Line 318:
 
               <h3 id="Protol4" class="sub6">4.2.4. C4HSL-dependent CmR expression assay ([Cm] = 75 microg/mL)</h3>
 
               <h3 id="Protol4" class="sub6">4.2.4. C4HSL-dependent CmR expression assay ([Cm] = 75 microg/mL)</h3>
 
                     <p class="text4">
 
                     <p class="text4">
<strong>-Samples</strong>
+
<strong>-Samples</strong><br>
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3k3)#1<br>
+
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#1<br>
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3k3)#2<br>
+
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#2<br>
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3k3)#1<br>
+
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#1<br>
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3k3)#2<br>
+
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#2<br>
 
<br><strong>-Procedure</strong><br>
 
<br><strong>-Procedure</strong><br>
 
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.<br>
 
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.<br>

Latest revision as of 07:43, 18 September 2015

C4HSL-dependent CmR expression

  
  

1. Introduction

      

   

2. Summary of the Experiment

2.1. C4HSL-dependent CmR expression

      

Fig. 3-1-2-1. C4HSL-dependent CmR expression

We confirmed the function of C4HSL-dependent CmR expression by measuring the optical density of the cultures containing chloramphenicol (Cm) (Fig. 3-1-2-1.). In this experiment we prepared four cells which contain different sets of plasmids, (1), (2), (3), and (4) (Fig. 3-1-2-2.). C4HSL and chloramphenicol was added into the medium containing the cells. The optical density was measured every hour for eight hours to estimate the concentration of the cell. (1), and (2) are the cooperating and defecting prisoner coli A, respectively. (3), and (4) are the negative control for (1), and (2), respectively.

      

Fig. 3-1-2-2. Plasmids for the experiment of C4HSL-dependent CmR expression

2.2. Insertion of an ssrA degradation tag to CmR

At the first stage of wet experiment, Prisoner cell A and B, which are the initially designed circuits showed leaky expression of CmR. Cells showed active growth even in the absence of AHL when the cell harboring the pairs of plasmids (1) and (2) in Prisoner coli A (Fig. 3-1-2-2.). As a result of our modeling, the influence of the leakage was not reduced by increasing the Cm concentration, which was one of our solutions. (link to modelingリンクさせる!!)
   For precise implementation of our payoff matrix, suggestions from modeling (link to modelingリンクさせる!!) allowed us to successfully solve the influence of the leakage by adding an ssrA tag right after the CmR gene (Pcon_rhlR_TT_Plux_CmRssrA, BBa_K1632023) (Fig. 3-1-2-3.). Protein with an ssrA tag is easily degraded by ClpXP and ClpAP that E.coli originally have. The optical density was measured every hour for eight hours to estimate the growth of the Prisoner coli with the improved parts (Pcon_rhlR_TT_Plux_CmRssrA).


      

Fig. 3-1-2-3.  The improved parts, BBa_K1632023, we constructed


      

Fig. 3-1-2-4. Cells for the experiment to measure C4HSL-dependent CmR expression


2.3. Realizing the payoff matrix

2.3.1. Determining the ideal Cm Concentration

Using the improved plasmid we constructed, our E.coli version payoff matrix was replicated through wet experiments. The order of the ODs were as expected. (もしくは We tried to realize the payoff matrix.) However, from the results, the difference between “middle” and “high” growth inhibition was hardly observable.
    The growth rate of the Prisoner cells (5) and (6), grown in different Cm concentration (50, 75, 100microg/mL) without C4HSL, were observed. (refer protocol 4-2-3)

2.3.2. Payoff matrix with the lower Cm Concentration

Using the lower Cm concentration (75microg/mL), the growth of the Prisoner cells (5) and (6) were measured to realize the payoff matrix.

3. Results

3.1. Arabinose dependent FimE expression

      

私たちは、4種類のarabinose濃度でFimBが働くかどうかを、GFPを用いたレポーターアッセイによって確かめた。  Figure(図番号) は、default ONのサンプルが、arabinose誘導によって、OFF状態に切り替わった結果を示している。 またFigure(図番号)は、default OFFのサンプルが、arabinose誘導によって、ON状態に切り替わった結果を示している。 Figure(図番号) shows our experimental results of FimB and Fimswitch. From the results of the reporter cell C and D, inversion from ON to OFF and OFF to ON by endogenous proteins are negligible. レポーターセルE,Fの結果から、FImEの発現はヒストグラムの波形にほとんど影響を与えないことがわかる。 以上の2つの結果から、FimBが理想的に両反転を起こしていることがわかる。

Fig. 3-4-3-1.

3.2. FLA analysis

      

写真とシークエンスデータ

4. Materials and Methods

4.1. Construction

-Strain

      

All the samples were JM2.300 strain.

-Plasmids

      

(1) Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1) + Plac_lasI (pSB3K3)

Fig. 3-1-4-1.

      

(2) Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1) +promoter less_lasI (pSB3K3)

Fig. 3-1-4-2.

      

(3) Pcon_rhlR_TT_Plux_CmR (pSB6A1) + Plac_lasI (pSB3K3)

Fig. 3-1-4-3.

      

(4) Pcon_rhlR_TT_Plux_CmR (pSB6A1) +promoter less_lasI (pSB3K3)

Fig. 3-1-4-4.

      

(5) Negative control1: Pcon_rhlR_TT_promoter less_CmR (pSB6A1) + Plac_lasI (pSB3K3)

Fig. 3-1-4-5.

      

(6) Negative cotrol2:Pcon_rhlR_TT_promoter less_CmR (pSB6A1) +promoter less_lasI (pSB3K3)

Fig. 3-1-4-6.

4.2. Assay Protocol

4.2.1. C4HSL-dependent CmR expression assay

-samples
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#2
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+ promoter less_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmR (pSB6A1) + promoter less_lasI (pSB3K3)#2
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+Plac_lasI (pSB3K3)#1
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+Plac_lasI (pSB3K3)#2
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#1
Pcon_rhlR_TT_promoter less_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#2


-Procedure
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp (50 microg/mL) and Kan (30 microg/mL) and grow the cells at 37°C until the observed OD590 reaches 0.5.
3. Centrifuge 1 mL of the sample at 5000g, RT for 1 minute.
4. Suspend the pellet in 1mL of LB containing Amp and Kan.
5. Add 30 microL of suspension in the following medium.
   ①)LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + 50 microM C4HSL (30 microL) + Chloramphenicol (3 microL of 100 microg/mL)
   ②)LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (30 microL) + Chloramphenicol (3 microL of 100 microg/mL)
6. Grow the samples of cells at 37°C for more than 8 hours.
7. Measure optical density every hour. (If the optical density is over 1.0, dilute the cell medium to 1/5.)

4.2.2. C4HSL-dependent CmR expression assay (With an ssrA tag)

-samples
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#2
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#2
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+Plac_lasI (pSB3K3)#2
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmR (pSB6A1)+promoter less_lasI (pSB3K3)#2
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+Plac_lasI (pSB3K3)#1
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+Plac_lasI (pSB3K3)#2
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+promoter less_lasI (pSB3K3)#1
Pcon_rhlR_TT_promoter less _CmR (pSB6A1)+promoter less_lasI (pSB3K3)#2

-Procedure
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp (50 microg/mL) and Kan (30 microg/mL) and grow the cells at 37°C until the observed OD590 reaches 0.5.
3. Centrifuge 1 mL of the sample at 5000g, RT for 1 minute.
4. Suspend the pellet in 1mL of LB containing Amp and Kan.
5. Add 30 microL of suspension in the following medium.
   ①)LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + 50 microM C4HSL (30 microL) + Chloramphenicol (3 microL of 100 microg/mL)
   ②)LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (30 microL) + Chloramphenicol (3 microL of 100 microg/mL)
6. Grow the samples of cells at 37°C for more than 8 hours.
7. Measure optical density every hour. (If the optical density is over 1.0, dilute the cell medium to 1/5.)

4.2.3. Chloramphenicol-dependent Growth Assay with ssrA tag

-samples
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#2
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#2

-Procedure
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp (50 microg/mL) and Kan (30 microg/mL) and grow the cells at 37°C until the observed OD590 reaches 0.5.
3. Centrifuge 1 mL of the sample at 5000g, RT for 1 minute.
4. Suspend the pellet in 1 mL of LB containing Amp and Kan.
5. Add 30 microL of suspension in the following medium.
   ①) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (3 microL) + Chloramphenicol (6 microL of 25 microg/mL) + 99.5% ethanol (6 microL)
   ②) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (3 microL) + Chloramphenicol (9 microL of 25 microg/mL) + 99.5% ethanol (3 microL)
   ③) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (3 microL) + Chloramphenicol (12 microL of 25 microg/mL)
6. Grow the samples of cells at 37°C for more than 8 hours.
7. Measure the optical density every hour. (If the optical density is over 0.9, dilute the cell medium to 1/5.)

4.2.4. C4HSL-dependent CmR expression assay ([Cm] = 75 microg/mL)

-Samples
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+Plac_lasI (pSB3K3)#2
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#1
Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1)+promoter less_lasI (pSB3K3)#2

-Procedure
1. Prepare overnight cultures for the samples in 3 mL LB medium, containing ampicillin (50 microg/mL) and kanamycin (30 microg/mL) at 37°C for 12 hours.
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp (50 microg/mL) and Kan (30 microg/mL) and grow the cells at 37°C until the observed OD590 reaches 0.5.
3. Centrifuge 1 mL of the sample at 5000g, RT for 1 minute.
4. Suspend the pellet in 1mL of LB containing Amp and Kan.
5. Add 30 microL of suspension in the following medium.
   ①) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + 50 microM C4HSL (30 microL) + Chloramphenicol (75 microg/mL)
   ②) LB (3 mL) + antibiotics (Amp 50 microg/mL + Kan 30 microg/mL) + DMSO (30 microL) + Chloramphenicol (75 microg/mL)
6. Grow the samples of cells at 37°C for more than 8 hours.
7. Measure optical density every hour. (If the optical density is over 0.9, dilute the cell medium to 1/5.)

6. Reference

      

1. Bo Hu et al. (2010) An Environment-Sensitive Synthetic Microbial Ecosystem. PLoS ONE 5(5): e10619