Difference between revisions of "Team:elan vital korea/Protocol"

 
(180 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
{{ElanVitalKoreaMWlook}}
 
{{ElanVitalKoreaMWlook}}
 
{{ElanVitalKorea}}
 
{{ElanVitalKorea}}
 +
{{imageslider}}
  
 
<html>
 
<html>
 
+
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js"></script>
+
 
<script>
 
<script>
 
$(document).ready(function(){
 
$(document).ready(function(){
Line 14: Line 14:
 
                      
 
                      
 
       $(window).scroll(function() {
 
       $(window).scroll(function() {
                      
+
                     boot
 
         // Scroll the background at var speed
 
         // Scroll the background at var speed
 
         // the yPos is a negative value because we're scrolling it UP!                                 
 
         // the yPos is a negative value because we're scrolling it UP!                                 
Line 37: Line 37:
 
document.createElement("section");
 
document.createElement("section");
 
</script>
 
</script>
 +
 +
 +
 +
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.6.1/jquery.min.js"></script>
 +
<script src="jquery.blueberry.js"></script>
 +
 +
<script>
 +
$(window).load(function() {
 +
    $('.blueberry').blueberry();
 +
});
 +
</script>
 +
 +
 
<style>
 
<style>
  
Line 56: Line 69:
 
     max-width: 1920px;
 
     max-width: 1920px;
 
     position: relative;
 
     position: relative;
    box-shadow: 0 0 50px rgba(0,0,0,0.8);
 
 
}
 
}
 
#about {
 
#about {
    background: url(https://static.igem.org/mediawiki/2015/8/80/Experimentalbg.png) 50% 0 no-repeat fixed;
+
background: url(https://static.igem.org/mediawiki/2015/9/9c/Newlightbg.jpg) 50% 0 no-repeat fixed;
    min-height:1000px;
+
/*    min-height:1000px;
height: 1000px;
+
height: 1000px; */
 +
height: auto;
 
     margin: 0 auto;
 
     margin: 0 auto;
 
     width: 100%;
 
     width: 100%;
 
     max-width: 1920px;
 
     max-width: 1920px;
 
     position: relative;
 
     position: relative;
    box-shadow: 0 0 50px rgba(0,0,0,0.8);
 
 
}
 
}
 
#maintext {
 
#maintext {
    background: url(https://static.igem.org/mediawiki/2015/1/1a/ExperimentalBG3.PNG) 50% 0 no-repeat fixed;
+
background: url(https://static.igem.org/mediawiki/2015/9/9c/Newlightbg.jpg) 50% 0 no-repeat fixed;
    height: 1000px;
+
/*    height: 1000px; */
 
min-height:1000px;
 
min-height:1000px;
 
     margin: 0 auto;
 
     margin: 0 auto;
Line 76: Line 88:
 
     max-width: 1920px;
 
     max-width: 1920px;
 
     position: relative;
 
     position: relative;
    box-shadow: 0 0 50px rgba(0,0,0,0.8);
 
 
}
 
}
  
 
#maintext2 {
 
#maintext2 {
    background: url(https://static.igem.org/mediawiki/2015/b/bb/ExperimentalBG2.PNG) 50% 0 no-repeat fixed;
+
background: url(https://static.igem.org/mediawiki/2015/9/9c/Newlightbg.jpg) 50% 0 no-repeat fixed;
    height: 1000px;
+
/*    height: 1000px; */
 
min-height:1000px;
 
min-height:1000px;
 
     margin: 0 auto;
 
     margin: 0 auto;
Line 87: Line 98:
 
     max-width: 1920px;
 
     max-width: 1920px;
 
     position: relative;
 
     position: relative;
    box-shadow: 0 0 50px rgba(0,0,0,0.8);
 
 
}
 
}
  
Line 110: Line 120:
 
     font: 10px/1.5 Verdana, Helvetica, sans-serif;
 
     font: 10px/1.5 Verdana, Helvetica, sans-serif;
 
     float: left;     
 
     float: left;     
     width: 16%;
+
     width: 20%;
     margin:  2% 2% 50px 2%;
+
     margin:  2% 2% 50px 8%;
 
}
 
}
 
   
 
   
Line 159: Line 169:
 
h5{
 
h5{
 
text-decoration:none;
 
text-decoration:none;
font-size: 24px;
+
font-size: 22px;
 
letter-spacing:1px;
 
letter-spacing:1px;
 
line-height:25px;
 
line-height:25px;
Line 167: Line 177:
  
 
p {
 
p {
font-size:14px;
+
font-size:18px;
line-height:160%;
+
line-height:170%;
 
}
 
}
  
Line 202: Line 212:
 
   /* html { -webkit-text-size-adjust:none; -ms-text-size-adjust:none; } */
 
   /* html { -webkit-text-size-adjust:none; -ms-text-size-adjust:none; } */
 
}
 
}
 +
 +
 +
 +
.inner {
 +
width: 40%;
 +
height: auto;
 +
margin-left:30%;
 +
}
 +
 +
.inner0 {
 +
width: 60%;
 +
height: auto;
 +
margin-left:20%;
 +
}
 +
 +
.inner1 {
 +
width: 30%;
 +
/* height: auto; */
 +
margin-left:35%;
 +
margin-bottom: 10px;
 +
}
 +
 +
 +
 +
.caption1 {
 +
width: 50%;
 +
height:150px;
 +
float:left;
 +
}
 +
 +
.caption2 {
 +
width: 50%;
 +
height:140px;
 +
float:left;
 +
}
 +
 +
.caption3 {
 +
width: 30%;
 +
height:180px;
 +
float:left;
 +
}
 +
 +
#extra {
 +
float:left;
 +
width 200px;
 +
}
 +
 +
.caption4 {
 +
width: 30%;
 +
height:250px;
 +
float:left;
 +
}
 +
 +
.caption5 {
 +
width: 30%;
 +
height:350px;
 +
float:left;
 +
}
 +
 +
 +
.caption6 {
 +
width: 30%;
 +
height:80px;
 +
float:left;
 +
}
 +
 +
.caption7 {
 +
width: 30%;
 +
height:140px;
 +
float:left;
 +
}
 +
 +
 +
 +
a:visited { text-decoration: none; color:white; }
 +
a:hover { text-decoration: none; color:white;}
 +
a:focus { text-decoration: none; color:white; }
 +
a:hover, a:active { text-decoration: none; color:white;}
  
  
Line 210: Line 298:
  
 
<body>
 
<body>
     <!-- Section #1 -->
+
     <!-- Section #1 --!>
 
         <section id="home" data-speed="10" data-type="background">
 
         <section id="home" data-speed="10" data-type="background">
            <a name="top" id="top"></a>
+
  <a name="top" id="top"></a>
            <a href="#">
+
        <a href="#"><img class="igem" src="https://static.igem.org/mediawiki/2015/7/70/IGEM_Logo.gif"></a>
                <img class="igem" src="https://static.igem.org/mediawiki/2015/7/70/IGEM_Logo.gif">
+
            <br>
            </a>
+
            <br>
                        <br><br><br><br><br><br><br>
+
            <br>
                    <div class="center;">
+
            <br>
            <a href="https://2015.igem.org/Team:elan_vital_korea">
+
            <br>
                <img class="displayed" src="https://static.igem.org/mediawiki/2015/d/d5/ElanVital_Logo.png">
+
            <br>
            </a>
+
            <br>
 +
<div class="center;">
 +
                <a href="https://2015.igem.org/Team:Elan_Vital_Korea">
 +
                    <img class="displayed" src="https://static.igem.org/mediawiki/2015/d/d5/ElanVital_Logo.png">
 +
                </a>
 
                 <h4 style="text-align:center;">
 
                 <h4 style="text-align:center;">
 
                     WETLAB <br> -Protocol-
 
                     WETLAB <br> -Protocol-
Line 233: Line 325:
  
  
     <!-- Section #2 -->
+
     <!-- Section #2 --!>
         <section id="about" data-speed="10" data-type="background">
+
         <section id="about" data-speed="10" data-type="background" >
            <h5 style="text-align:center;">
+
    <h5 style="text-align:center;">
                <a name="myAnchor" id="myAnchor"></a>
+
<font color="black">
 +
<a name="myAnchor" id="myAnchor"></a><br><br><br>Protocols
 +
</font>
 +
</h5>
 
<br>
 
<br>
                    <font color="white">PROTOCOL</font>
 
            </h5>
 
                 
 
                    <P style="text-align:center;">
 
                        <font color="white">
 
We conducted our experiments by following the protocols below.  As an official procedure, lab workers should understand the lab experiment <br>
 
assigned to them along with safety procedures before starting lab work. The protocols are arranged according to the order of experiments we followed. <br><br>
 
                    </font>
 
                    </p> 
 
<img class="displayed" src="https://static.igem.org/mediawiki/2015/6/6e/Hr_white.jpg" width="80px" height="2px">
 
<br>
 
                </h6>
 
  
  <h5 style="text-align:center;">
 
                <font color="white">
 
Protocols to handle enzymes.
 
                    </h5>
 
            <br>
 
                    <P style="text-align:center;">
 
<b>1.</b> <br>
 
Enzymes used in our project, such as AHL, must be stored in low temperature.  The enzymes must be stored in the freezer <br>
 
when they are not used, and must be put on ice when taking them out of the freezer for an experiment. <br><br>
 
  
<b>2.</b> <br>
+
<div class="inner0">
Enzymes should be added last to the solution, because enzymes are sensitive to inactivation by pH and ionic conditions that <br>
+
<P style="text-align:left;">
deviate from their storage and reaction buffers. After adding enzymes, the mixed solution should be mixed completely.
+
<font color="black">
 +
We conducted our experiments by following the protocols below.  As an official procedure, lab workers should understand the lab experiment assigned to them along with safety procedures before starting lab work. The protocols are arranged according to the order of experiments we followed.
 +
</font>
 +
</p> 
 +
</div>
 +
</section>
 +
 
 +
<section id="maintext0" data-speed="10" data-type="background">
 +
<h5 style="text-align:center;">
 +
<font color="black">
 +
How to handle reagents.
 +
</font>
 +
</h5>
 
<br>
 
<br>
</p>
 
                </font>
 
  
<img class="displayed" src="https://static.igem.org/mediawiki/2015/6/6e/Hr_white.jpg" width="80px" height="2px">
+
<div class="inner">
 +
<P style="text-align:left;">
 +
<font color="black">
 +
<b>1.</b>
 +
Reagents used in our project, such as restriction enzymes, must be stored in low temperature.  The reagents must be stored in the freezer when they are not used, and must be put on ice when taking them out of the freezer for an experiment. <br><br>
 +
 
 +
<b>2.</b>
 +
Reagents should be added last to the solution, because reagents are sensitive to inactivation by pH and ionic conditions that deviate from their storage and reaction buffers. After adding reagents, the mixed solution should be mixed completely.
 +
</font>
 +
</p> 
 +
</div>
 +
 
 
<br>
 
<br>
  <h5 style="text-align:center;">
+
<h5 style="text-align:center;">
                <font color="white">
+
<font color="black">
Protocols to store materials and maintain <br>
+
Protocols to store materials and maintain <Br>
 
usage history of each material.
 
usage history of each material.
    </h5>
+
</font>
            <br>
+
</h5>
 +
<Br>
  
                    <P style="text-align:center;">
+
<div class="inner1">
                <font color="white">
+
<P style="text-align:left;">
<b> 1. </b><br>
+
<font color="black">
Reporter cell, test cell and competent cell (Top 10 invitrogen) must be kept at 4°C and frequently used enzymes, reagents, <br>
+
<b>1.</b>
DNA plasmids should be kept at −20°C in the freezer. <Br><br>
+
Reporter cell, test cell and competent cell (Top 10 invitrogen) must be kept at 4°C and frequently used reagents, reagents, DNA plasmids should be kept at −20°C in the freezer. <br><br>
  
<b> 2. </b><br>
+
<b>2.</b>
We use AHL as protein enzymes. AHL must be kept at lower temperature (4°C or lower) for the recurring use. <br>
+
We use triple distilled water (or DDH2O) to make LB broth. Triple distilled water is kept at lab temperature (around 18 °C or lower). <br><br>
AHL can be destroyed easily when it is stored and/or handled in improper temperature. <br><br>
+
  
<b> 3. </b><br>
+
<b>3.</b>
We use triple distilled water (or DDH2O) to make LB broth. Triple distilled water is kept at <br>
+
Other materials such as yeast and NaCl are stored and maintained under the responsibility of Gachon Molecular Biology Lab. <br><br>
lab temperature (around 18 °C or lower). <br>
+
 
</p>
+
<b>4.</b>
 +
We have to record the history of each material, including if plasmids/reporter cell/ test cell/ AHL have been frozen and if so, when it is used. <br><br>
 
</font>
 
</font>
 +
</p> 
 +
</div>
  
 +
<h5 style="text-align:center;">
 +
<font color="black">
 +
LB Medium
 +
</font>
 +
</h5>
 +
<br>
  
<br><br>
+
<div class="inner1">
  <a href="#top" rel="" id="top" class="anchorLink"><img class="displayed" src="https://static.igem.org/mediawiki/2015/b/b3/Scroll_arrow_top.PNG"></a>   
+
<P style="text-align:left;">
            <h6 style="text-align:center;">
+
<font color="black">
                        <font color="white">
+
<b>1.</b> To prevent contamination, we only used LB medium made within three days. <br><br>
                          To The Top
+
<b>2.</b> Materials: Sodium Chloride (LB Media, Sigma), Trypton(LB Media, Sigma), Yeast Extract(LB Media Sigma), ddH2O (triple distilled water) <br><br>
                        </font>
+
<b>3.</b> Equipment: autoclave, electronic scale. <br><br>
     
+
<b>4.</b> Protocol For 200mL LB bottle <br>
        </section>
+
1) 2 g of Sodium Chloride to a final concentration of 0.17 M <br>
 +
2) 2g of 1%(w/v) Bacto™ tryptone <br>
 +
3) 1g of 0.5% (w/v) yeast extract <br>
 +
4) ddH2O to 200 mL <br>
 +
5) Autoclave for 20 min within 2 hours <br>
 +
6) Keep at room temperature <br>
 +
</font>
 +
</p> 
 +
</div>
  
 +
<br><Br>
 +
<h5 style="text-align:center;">
 +
<font color="black">
 +
LB Agar Plates and Addition of Antibiotics
 +
</font>
 +
</h5>
 +
<br>
  
  
 +
<div class="inner1">
 +
<P style="text-align:left;">
 +
<font color="black">
 +
<b>1.</b> We have used LB (solidified lysogeny broth), rich growth medium for E.coli, in our experiments. <br><br>
 +
<b>2.</b> Just before pouring the solution into petri dishes, an antibiotic can be added for resistance selection. We followed the normal working concentrations such as: <br /><br />
 +
- chloramphenicol: 25 μg/mL (Chloramphenicol stock is dissolved in ethanol) In case of using ampicillin: 100 μg/mL <br>
 +
- normal stock concentrations:1000-fold  <br><br>
 +
<b>3.</b> Material to make LB plates: <br /> Sodium Chloride (LB Media, Sigma) Bacto™ tryptone (LB Media, Sigma) yeast extract (LB Media, Sigma) Bacto™ agar (LB Media, Sigma) ddH2O (triple distilled water) 1000x chloramphenicol or ampicillin <br><br>
 +
<b>4.</b> LB agar preparation protocol <br /> We usually make 1liter bottle for LB Agar <br>
 +
1) 200 mL LB prepared fresh, non-autoclaved <br>
 +
2) 3 g agar <br>
 +
3) Shake until all solids are dissolved <br>
 +
4) Autoclave for 20 min within 2 hr <br>
 +
5) Keep it cool until it reaches around 40-50 °C <br>
 +
6) Add 200 μL of 1000x chloramphenicol and gently stir it. Be careful not to shake the bottle too long/hard so that bubbles are created. <br>
 +
7) Pour into empty petri dishes just enough to cover the surface (~20 mL per plate). In case that bubbles are in the plate, heat the plate surface carefully with a burner only until the bubbles are burst but the solution is heated. <br>
 +
8) Leave the plates at room temperature around one hour until it is solidified. <br>
 +
9) Solidified plates should be turned upside down for a few hours at room temperature, then stored at 4°C. <br>
 +
</font>
 +
</p> 
 +
</div>
 +
        </section>
  
  
  
    <!-- Section #3 -->
 
        <section id="maintext" data-speed="10" data-type="background">
 
            <br><br>
 
               
 
                 
 
  
                    <P style="text-align:center;">
 
                <font color="black">
 
<b> 4. </b><br>
 
Other materials such as yeast and NaCl are stored and maintained under the responsibility of Gachon Molecular  Biology Lab.  <br>
 
<b> 5. </b><br>
 
We have to record the history of each material, including if plasmids/reporter cell/ test cell/ AHL have been frozen and if so, when it is used. <br>
 
                </font>
 
                    </p>
 
  
 +
 +
    <!-- Section #4 --!>
 +
        <section id="maintext2" data-speed="10" data-type="background">
 +
<br><br>
 +
<h5 style="text-align:center;">
 +
<font color="black">
 +
Overnight Cultures with Antibiotics
 +
</font>
 +
</h5>
 
<br>
 
<br>
<img class="displayed" src="https://static.igem.org/mediawiki/2015/7/74/Hr_black.jpg" width="80px" height="2px">
 
<br>
 
                        <h5 style="text-align:center;">
 
                                </a><font color="black">LB Agar Plates and Addition of Antibiotics</font></h5> <br>
 
<P style="text-align:center;">
 
  
 +
 +
<div class="inner1">
 +
<P style="text-align:left;">
 
  <font color="black">
 
  <font color="black">
<P style="text-align:center;">
 
<b> 1. </b><br>
 
We have used LB (solidified lysogeny broth), rich growth medium for E.coli, in our experiments almost all the time.<br> <br>
 
<b> 2. </b><br>
 
All the needed chemicals including yeast extract must be prepared beforehand. <br><br>
 
<b> 3. </b><br>
 
Autoclave must be available. <br><br>
 
<b> 4. </b><br>
 
Growth on LB Agar plates provides colonies originating from one single bacteria cell. <br><br>
 
<b> 5. </b><br>
 
Just before pouring the solution into petri dishes, an antibiotic can be added for resistance selection. <br> We
 
followed the normal working concentrations such as: <br>
 
  
- chloramphenicol: 25 μg/mL <br>
+
<b>1.</b> We have conducted overnight culture for a single bacterial strain which process needs a plate or medium with single colonies and LB containing chloramphenicol. <br><br>
(Chloramphenicol stock is dissolved in ethanol)<br>
+
<b>2.</b> Material Needed chloramphenicol: 25 μg/mL Normal stock concentrations: 1000-fold higher In case of using ampicillin: 100 μg/mL <br><br>
In case of using ampicillin: 100 μg/mL <br>
+
<b>3.</b> Protocol<br>
- normal stock concentrations:1000-fold <br><br>
+
1) Quickly burn the neck of a bottle containing LB medium before pouring it out into a tube. Even the slightest contamination of LB will be damaging. <br>
 +
2) Add chloramphenicol or ampicillin to give the appropriate concentration<br>
 +
3) Scoop one colony from the plate with a sterile micropipette tip<br>
 +
4) Immediately stick the tip into the tube containing the medium and chloramphenicol or ampicillin<br>
 +
5) Incubate at 37°C with the shaking incubator overnight.<br>
 +
</font>
 +
</p> 
 +
</div>
  
<b> 6. Material to make LB plates: </b><br>
+
 
NaCl (Sodium Chloride) <br>  
+
<br><br>
Bacto™ tryptone <br>  
+
<h5 style="text-align:center;">
yeast extract <br>  
+
<font color="black">
Bacto™ agar <br>  
+
Agarose Gel Electrophoresis
ddH2O (triple distilled water) <br>
+
1000x chloramphenicol or ampicillin <br> <br>
+
 
</font>
 
</font>
</p>
+
</h5>
                <a href="#top" rel="" id="top" class="anchorLink">
+
<br>
                    <img class="displayed" src="https://static.igem.org/mediawiki/2015/5/5b/Scroll_arrow_top_Black.png"></a> 
+
                <h6 style="text-align:center;">
+
                    <font color="black">
+
                      To The Top
+
                  </font>
+
                </h6>
+
        </section>
+
  
  
  
  
 +
<div class="inner1">
 +
<P style="text-align:left;">
 +
<font color="black">
  
 +
<b>1.</b> Agarose gel electrophoresis is used for separation and analysis of larger (>100 bases in length) nucleic acids under non-denaturing conditions. <br><br>
 +
<b>2.</b> Analysis requires that the gel contains a DNA stain visible under UV light. Since the stain interacts with nucleic acids and is therefore potentially mutagenic, always wear nitrile gloves when working with agarose gels.<br><br>
 +
<b>3.</b> Use protective glasses when using the UV light box.<br><br>
 +
<b>4.</b> Material Needed<br>
 +
Agarose<br>
 +
1x TBE<br>
 +
Sybr®Safe<br>
 +
Loading dye mix<br>
 +
DNA ladder size marker<br>
 +
DNA samples<br><br>
 +
<b>5.</b> Protocol: <br>
 +
1) The gel tray must be on a level surface.<br>
 +
2) Insert the comb into the gel tray at one end ~1 cm from the edge.<br>
 +
3) For a 1% 150 mL agarose gel, weigh 1.5 g of agarose in a 500 mL conical flask. <br>
 +
4) Add 150 mL 1x TBE buffer. <br>
 +
5) To dissolve the agarose in the buffer, swirl to mix and microwave for a few minutes taking care not to boil the solution out of the flask. <br>
 +
6) Remove the flask occasionally and check whether the agarose has dissolved completely. <br>
 +
7) Let the agarose solution cool down.<br>
 +
8) Once the solution is touchable, add the DNA stain. <br>
 +
9) Check the stock concentration as the working concentration for ethidium bromide is 0.5 μg/mL while for Sybr®Safe it is simply 1x.<br>
 +
10) Pour the gel solution into the gel tray. <br>
 +
11) Remove any air bubbles with a pipette tip. <br>
 +
12) Put in comb.<br>
 +
13) The gel will solidify while cooling down to room temperature, which usually takes about 30 min.<br>
 +
14) Running the gel by the following procedure <br>
 +
a. Release the gel tray from the tape or casting stand. <br>
 +
b. Place the gel tray into the buffer chamber and remove the comb carefully<br>
 +
c. Add 1x TBE buffer until the gel is completely covered.<br>
 +
d. Take the DNA sample (~0.2 μg) and mix with loading dye. <br>
 +
e. Load the size marker mixed in 1x loading dye (~6 μL final volume) into a middle well.<br>
 +
f. Load the samples into the other wells while writing down which lanes have which samples.<br>
 +
g. Put the lid onto the buffer chamber and connect it to the power supply.<br>
 +
h. Run the gel at 100 V for 30–60 min. Neither of the two dyes should be run off the gel. <br>
 +
i. Stop the run and bring the gel to a UV table to visualize the gel bands. <br>
 +
j. Take a picture of the gel.<br>
 +
</font>
 +
</p> 
 +
</div>
  
    <!-- Section #4 -->
+
         </section>
         <section id="maintext2" data-speed="10" data-type="background">
+
<br><br>
+
  
<P style="text-align:center;">
 
    <font color="white">
 
Using newer molecular detection techniques for antibiotic resistance such as quantitative PCR (qPCR) or microarrays, we can determine <br>
 
the presence of specific resistance genes within hours, and we obtain improved diagnosis results. However, <br>
 
these culture-independent approaches target well-known and well-studied pathogens or resistance-causing genes only,<br>
 
and cannot be easily used for broader spectrum screening. <br><br>
 
    </font>
 
</p>
 
  
  
<P style="text-align:center;">
 
    <font color="white">
 
CDC dramatically innovated the detection process by adopting the Advanced Molecular Detection (AMD), which combines the latest pathogen <br>
 
identification technologies with bioinformatics and advanced epidemiology to more effectively understand, prevent and control infectious <br>
 
diseases. Using those technologies, it is possible to rapidly look for a microbe's match among thousands of reference <br>
 
samples in the microbe library.  If no match is found, the whole genomic sequence <br>
 
of the microbe's DNA code can be taken, then quickly analyzed using disease detective works and bioinformatics <br>
 
to answer critical disease-response questions. However, this new method, while it sounds very interesting, is not to be <br>
 
completed until 2020, and still requires incubation, as well as being expensive. <br><br>
 
  
    </font>
 
</p>
 
<img class="displayed" src="https://static.igem.org/mediawiki/2015/6/6e/Hr_white.jpg" width="80px" height="2px">
 
<br><br>
 
  
  
<h5 style="text-align:center;">
+
    <!-- Section #5 --!>
<font color="white">
+
        <section id="maintext" data-speed="10" data-type="background">
Our Hypothesis: Possibility of Using Quorum <br>
+
<br><br>
Sensing for Early Detection
+
<h5 style="text-align:center;">
 +
<font color="black">
 +
Gel Extraction <br>
 
</font>
 
</font>
 
</h5>
 
</h5>
 
<br>
 
<br>
  
<P style="text-align:center;">
 
<font color="white">
 
Our team, Elan Vital Korea, addressed the problem of rapidly detecting antibiotic-resistant bacteria. We were interested in <br>
 
a rapid and efficient method of antibiotic resistance detection, and we believed that such a method could be engineered <br>
 
using quorum sensing.  Our hypothesis was that we would be able to use quorum sensing – a method bacteria <br>
 
use to communicate with each other – to make the cells quickly report the existence of antibiotic-resistant bacteria
 
<br><br>
 
  
By quorum sensing, bacteria can perform many cooperative functions, such as biofilm formation, antibiotic production, motility,<br>
+
<div class="inner1">
swarming, virulence, and much more.  While most quorum sensing takes place between bacteria of the same species, there are<br>
+
<P style="text-align:left;">
cases of interspecies quorum sensing.  Auto-inducers affect the gene expression of the bacteria once they reach <br>
+
  <font color="black">
a certain concentration threshold. Bacteria using quorum sensing usually produce small amounts of <br> auto-inducers, so that the concentration of auto-inducers are affected by the concentration of the bacteria. <br>
+
QIAquick®Gel Extraction Kit <br>
In other words, quorum sensing, in essence, regulates gene expression in response to cell density. <br>
+
Notes before starting<br /><br />
Using quorum sensing, bacteria are able to act in unison, as if they were a single organism.<br><br>
+
  
Quorum sensing is widely used by various bacteria for various functions, so each uses a slightly different auto-inducer <br>
+
<b>1.</b> This protocol is for the purification of up to 10μg DNA (70bp to 10kb). <br><br>
so the signals are not mixed up. In general, gram-negative bacteria use a class of molecules called N-acyl <br>
+
<b>2.</b> The yellow color of buffer QG indicates a pH ≤ 7.5. DNA adsorption to the membrane is only efficient at pH ≤ 7.5.<br><br>
homoserine lactones, or AHL, while gram-positive bacteria use short processed polypeptides.  <br><br>
+
<b>3.</b> Add ethanol (96%100%) to Buffer PE before use (see bottle label for volume). <br><br>
 +
<b>4.</b> Isopropanol (100%) and a heating block or water bath at 50°C are required. <br><br>
 +
<b>5.</b> All centrifugation steps are carried out at 17,900 x g (13,000 rpm) in a convetional table-top microcentrifuge. <br><br>
 +
<b>6.</b> Symbosl: ● centrifuge processing; ▲ vacuum processing. <br><br />
 +
<b>1.</b> Excise the DNA fragment from the agarose gel with a clean, sharp scalpel. <br>
 +
<b>2.</b>  Weigh the gel slice in a colorless tube. Add 3 volumes Buffer QG to 1 volume gel (100 mg gel ~ 100μl). The maximum amount of gel per spin column is 400mg. For >2% agarose gels, add 6 volumes Buffer QG. <br>
 
</font>
 
</font>
</p>
+
</h5>
 +
<br>
 +
        </section>
  
  <a href="#top" rel="" id="top" class="anchorLink">
 
                <img class="displayed" src="https://static.igem.org/mediawiki/2015/b/b3/Scroll_arrow_top.PNG"></a> 
 
            <h6 style="text-align:center;">
 
                <font color="white">
 
                      To The Top
 
                </font>
 
            </h6>
 
  
 +
 +
 +
 +
 +
 +
  <!-- Section #6 --!>
 +
        <section id="maintext2" data-speed="10" data-type="background">
 +
 +
<div class="inner1">
 +
<P style="text-align:left;">
 +
<font color="black">
 +
<b>3.</b>  Incubate at 50°C for 10 min (or until the gel slice has completely dissolved). Vortex the tube every tube every 2-3 min to help dissolve gel. After the gel slice has dissolved completely, check that the color of the mixture is yellow (similar to Buffer QG without dissolved agarose). If the color of the mixture is orange or violet, add 10μl 3 M sodium acetate, pH 5.0, and mix. The mixture turns yellow. <br><br />
 +
<b>4.</b>  Add 1 volume isopropanol to the sample and mix. <br><br />
 +
<b>5.</b>  Place a QIAquick spin column in ● a provided 2ml collection tube or into ▲ a vacuum amnifold. To bind DNA, aply the sample to the QIAquick column and ● centrifuge for 1 min or ▲ apply vaccum to the manifold untill all the
 +
samples QIAquick column back into the same tube. For example volumes of 0> 800μl, load and spin/apply vacuum again. <br><br />
 +
<b>6.</b>  If the DNA will subsequently be used for sequenceing, in vitro transcruption, or microinjection, add 500μl Buffer QG to the QIAquick column and ● centrifuge for 1 min or ▲ apply vaccum. ● Discard flow through and place the
 +
QIAquick column back into the same tube. <br><br>
 +
 +
<b>7.</b> To wash, add 750μl Bufick column and fer PE to QIAquickcolumn and ●
 +
centrifuge for 1 min or ▲ apply vacuum. ●Discard flow-through and place the
 +
QIAquick column back into the same tube. <br><br>
 +
<b>8.</b> Place QIAquick column into a clean 1.5 ml microcentrifuge tube.
 +
</font>
 +
</h5>
 
         </section>
 
         </section>
  
Line 444: Line 601:
  
  
 +
 +
    <!-- Section #7 --!>
 +
<div class="inner1">
 +
<P style="text-align:left;">
 +
<font color="black">
 +
<b>9.</b> To elute DNA, add 50μl Buffer EB (10mM Tris•Cl, pH 8.5) or water to the
 +
center of the QIAquick memberane and centrifugethe colum for 1 min. For
 +
increased DNA concentration, add 30μl Buffer EB to the center of the
 +
QIAquick membrance, let the column stand for 1 min, and then centrifuge for
 +
1 min. After the addition of Buffer EB to the QIAquick membrance, increasing
 +
the incubation time to up to 4 min can increase the yield of purified DNA. <br><br>
 +
 +
<b>10.</b> If the Purified DNA is to be analyzed on a gel, add 1 volume of Loading Dye
 +
to 5 volumes of purified DNA. Mix the solution by pipetting up and down before loading the gel.
 +
</font>
 +
</h5>
 +
<br>
 +
</div>
  
  
    <!-- Section #5 -->
 
        <section id="maintext" data-speed="10" data-type="background">
 
            <P style="text-align:center;">
 
<font color="black">
 
 
<br><br>
 
<br><br>
 +
<h5 style="text-align:center;">
 +
<font color="black">
 +
Transformation Procedure
 +
</font>
 +
</h5>
 +
<br>
  
For example, the picture below represents the quorum sensing mechanism in the bacteria vibrio fisheri.  Vibrio fisheri is a bacteria <br>
+
<div class="inner0">
that produces bioluminescence, and is famous for revealing quorum sensing for the first time. Vibrio fisheri uses quorum sensing <br>
+
<P style="text-align:left;">
to produce light in high cell density, and researchers first discovered quorum sensing from examining vibrio fisheri.<br><br>
+
  <font color="black">
 +
Use this procedure to transform One Shot* TOP10 chemically competent E. coli. We recommend including the pUC19 control plasmid DNA supplied with the kit (10 pg/ μl in 5mM TrisHCl, 0.5mM EDTA, pH 8) in your transformation experiment to verify the efficiency of the competent cells. Do not use these cells for electroporation.
 +
</font>
 +
</p>
 +
</div>
 +
<br>
 +
</section>
  
In vibrio fishri, quorum sensing involves LuxI and LuxR as well as AHL.  LuxI is the protein that produces AHL, and LuxR forms a complex <br>
 
with AHL to affect the regulation of genes.  In this case, it produces luciferase, which produces bioluminescence. Furthermore, the process <br>
 
also boosts the production of LuxI, which creates a positive feedback loop.  This AHL-LuxR quorum sensing mechanism is one of the most well <br>
 
known gram-negative quorum sensing pathways, and it can be <br> engineered to affect almost any coding sequence we like.<br><br>
 
  
 +
 +
 +
 +
 +
    <!-- Section #8 --!>
 +
        <section id="maintext2" data-speed="10" data-type="background">
 +
 +
<div class="inner1">
 +
<P style="text-align:left;">
 +
<font color="black">
 +
<b>1.</b> Thaw, on ice, one vial of One Shot® TOP 10 chemically competent cells for each transformation. <br><br>
 +
<b>2.</b> Add 1 to 5 μl of the DNA (10pg to 100 ng) into a vial of One Shot® cells and mix gently. Do not mix by pipetting up and down. For the pUC19 control, add 10pg (1μl) of DNA into a separate vial of One Shot® cells and mix gently. <br><br>
 +
<b>3.</b> Incubate the vial(s) on ice for 30 mins. <br><br>
 +
<b>4.</b> Heatshock the cells for 30 secs at 42°C without <br><br>
 +
<b>5.</b> Remove the vial(s) from the 42°C bath and place them on ice for 2 mins <br><br>
 +
<b>6.</b> Asceptically add 250 μl of prewarmed S.O.C. Medium to each vial. <br><br>
 +
<b>7.</b> Cap the vial(s) tightly and shake horizontally at 37°CC for 1 hour at 225 rpm
 +
in shaking incubator. <br><br>
 +
<b>8.</b> Spread 20200 μl from each transformation on a prewarmed selective plate
 +
and incubate overnight at 37°C. We recommend that you plate two different
 +
volumes to ensure that at least one plate will have wellspaced colonies. For
 +
the pUC19 control, dilute the transformation mix 1:10 into LB Medium (e.g.
 +
remove 100μl of the transformation mix and add to 900μl of LB Medium) and
 +
plate 25-100μl. <br><br>
 +
<b>9.</b> Store the remaining transformation mix at +4°C. Additional cells may be
 +
plated the next day, if desired. <br><br>
 +
<b>10.</b> Invert the selective plate(s) and incubate at 37°C <br><br>
 
</font>
 
</font>
 
</p>
 
</p>
 +
</div>
  
<img class="displayed" src="https://static.igem.org/mediawiki/2015/2/2e/Graphics-03-25.png">
+
 
 +
 
 +
      </section>
 +
 
 +
 
 +
 
 +
    <!-- Section #9 --!>
 +
        <section id="maintext" data-speed="10" data-type="background">
 +
<h5 style="text-align:center;">
 +
<font color="black">
 +
Reporter Cell Assay Protocol
 +
</font>
 +
</h5>
 
<br>
 
<br>
  
<p style="text-align:center;">
+
<div class="inner1">
<font color="black">
+
<P style="text-align:left;">
For the project, we have developed a reporter cell that expresses GFP in the presence of the QS signaling molecule
+
<font color="black">
acyl homoserine <br>
+
<b>1.</b> Measure out 1ml of the cells into tubes. <br><br>
lactone (AHL). Our test cells (which act as a simulation of antibiotic-resistant bacteria) express lactonase, <br>
+
<b>2.</b> Thaw out AHL on ice <br><br>
which breaks down AHL. In our experimental system, test cells should signify their presence by breaking down AHL and <br>
+
<b>3.</b> Put 3ul of AHL in test cell <br><br>
preventing GFP expression in reporter cells. <br>
+
<b>4.</b> Wait 30 minutes <br><br>
 +
<b>5.</b> Add 1ml of reporter cell to the test cell <br><br>
 +
<b>6.</b> Wait 3 hours <br><br>
 +
<b>7.</b> Put 200ul of the mixture into a well plate <br><br>
 +
<b>8.</b> Put the well plate in the spectrometer to observe the results. (various independent variables such as time or the amounts of the chemical were varied in our different experiments.) (It is usually a good idea to have a control group with empty LB medium  instead of the test cell running alongside the main experiment.)
 
</font>
 
</font>
 
</p>
 
</p>
 +
</div>
 +
 
<br>
 
<br>
<img class="displayed" src="https://static.igem.org/mediawiki/2015/6/6e/Hr_black.jpg" width="80px" height="2px">
+
<h5 style="text-align:center;">
 +
<font color="black">
 +
Mini and Midi preparation <br>
 +
</font>
 +
</h5>
 
<br>
 
<br>
 +
        </section>
  
<h5 style="text-align:center;">
+
 
<font color="black">
+
 
Experiment: Process and Results<br>
+
 
 +
    <!-- Section #9 -->
 +
        <section id="maintext2" data-speed="10" data-type="background">
 +
<div class="inner1">
 +
<P style="text-align:left;">
 +
<font color="black">
 +
QIAGEN® Plasmid Mini and Midi Kits <br>
 +
Notes before starting<br /><br />
 +
<b>1.</b> Add RNase A solution to Buffer P1, mix, and store at 2-8°C <br><br>
 +
 
 +
<b>2.</b> Optional: Add LyseBlue® reagent to Buffer P1 at a ratio of 1:1000. <br><br>
 +
 +
<b>3.</b> Prechill Buffer P3 at 4°C. Check Buffer P2 for SDS precipitation <br><br>
 +
 
 +
<b>4.</b> Isopropanol and 70% ethanol are required. <br><br>
 +
 
 +
<b>5.</b> Symbols: ● QIAGEN Plasmid Mini Kit; ■ QIAGEN Plasmid Midi Kit <br><br><br><br>
 +
 
 +
 
 +
 
 +
<b>1.</b> Harvest overnight bacterial culture by centrifuging at 6000 x g for 15 mins at
 +
4°C. <br><br>
 +
 
 +
<b>2.</b> Resuspend the bacterial pellet in ● 0.3ml or ■ 4ml Buffer P1. <br><br>
 +
 
 +
<b>3.</b> Add ● 0.3ml or ■ 4ml Buffer P2, mix thoroughly by vigorously inverting 4-6
 +
times, and incubate at room temperature (1525°C) for 5 mins. If using
 +
LyseBlue reagent, the solution will turn blue. <br><br>
 +
 
 +
<b>4.</b> Add ● 0.3ml or ■ 4 ml prechilled Buffer P3, mix thoroughly by vigorously
 +
inverting 4-6times. Incubate on ice for ● 5 mins or ■ 15 mins. If using
 +
LyseBlue reagent, mix the solution until it is colorless. <br><br>
 +
 
 +
<b>5.</b> ●: Centrifuge at 14,000-18,000 x g for 10 mins at 4°C. Re-centrifuge if
 +
supernatant is not clear
 +
■: Centrifuge at 20,000 x g for 30 mins at 4°C. Re-centrifuge the super
 +
natant at 20,000 x g for 15 mins at 4°C  <br><br>
 +
 
 +
<b>6.</b> Equlibriate a QIAGEN tip ● 20 or ■ 100 by applying ● 1ml or ■ 4ml Buffer QBT,
 +
and allow column to empty by gravity flow. <br><br>
 +
 
 +
<b>7.</b> Apply these supernatant from step 5 to the QIAGEN tip and allow it to enter
 +
the resin by gravity flow. <br><br>
 +
 
 +
<b>8.</b> Was the QIAGEN top with ● 2 x 2 ml or ■ 2 x10 ml Buffer QC. Allow Buffer QC
 +
to move through the QIAGEN top by gravity flow. <br><br>
 +
 
 +
<b>9.</b> Elute DNA with ● 0.8 ml or ■ 5 ml Buffer QF into a clean ● 2 ml or ■ 15 ml
 +
vessel. For constructs larger than 45 kb, prewarming the elution buffer to
 +
65°C may help to increase the yield. <br><br>
 +
 
 +
<b>10.</b> Precipitate DNA by adding ● 0.56 ml or ■ 3.5 ml room temperature
 +
isopropanol to the eluted DNA and mix. Centrifuge at 15,000 x g for 30 mins
 +
at 4°C. Carefully decant the supernatant. <br><br>
 +
 
 +
<b>11.</b> Wash the DNA pellet with ● 1 ml or ■ 2ml room temperature 70% ethanol
 +
and centrifuge at 15,000 x g for 10 mins. Carefully decant the supernatant. <br><br>
 +
 
 +
<b>12.</b> Air dry pellet for 5-10 mins and redissolve DNA in a suitable volume of  appropriate buffer (e.g., TE buffer, pH 8.0, or 10 mM TrisCl, pH 8.5). <br><br>
 +
</font>
 +
</p>
 +
</div>
 +
      </section>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
    <!-- Section #10 --!>
 +
        <section id="maintext" data-speed="10" data-type="background">
 +
 
 +
<h5 style="text-align:center;">
 +
<font color="black">
 +
Ligation
 
</font>
 
</font>
 
</h5>
 
</h5>
 
<br>
 
<br>
  
<P style="text-align:center;">
+
<p style="text-align:center">
<font color="black">
+
Quick Ligation Protocol
There are many ways of utilizing quorum sensing for medicinal use, and one of the most intuitive and most well-known methods is quorum quenching. <br>
+
</font>
+
 
</p>
 
</p>
  
<a href="#top" rel="" id="top" class="anchorLink">                   <img class="displayed" src="https://static.igem.org/mediawiki/2015/5/5b/Scroll_arrow_top_Black.png"></a>
+
 
  <h6 style="text-align:center;"> <font color="black">
+
<div class="inner1">
                  To The Top
+
<P style="text-align:left;">
              </font> </h6>
+
<font color="black">
 +
<b>1.</b> Combine 50 ng of vector with a 3-fold molar excess of insert. Adjust volume to 10μl with dH2O. <br>
 +
<b>2.</b> Add 10μl of 2X Quick Ligation Reaction Bugger and mix. <br>
 +
 
 +
<b>3.</b> Add 1μl of Quick T4 DNA Ligase and mix thoroughly. <br>
 +
 
 +
<b>4.</b> Centrifuge briefly and incubate at room temperature (25°C) for 5mins. <br>
 +
 
 +
<b>5.</b> Chill on ice, then transform or store at -20°C <br>
 +
 
 +
<b>6.</b> Do not heat inactivate. Heat activation dramatically reduces transformation efficiency. <br>
 +
</p>
 +
</div>
 +
 
 +
  <h5 style="text-align:center;">
 +
<font color="black">
 +
Enzyme Digestion
 +
</font>
 +
</h5>
 +
<br>
 +
 
 +
                <img class="displayed" src="https://static.igem.org/mediawiki/2015/c/cb/Graphics2-20.png" width="1026px">
 
         </section>
 
         </section>
  
  <!-- Section #6 -->
+
 
 +
 
 +
    <!-- Section #11 --!>
 
         <section id="maintext2" data-speed="10" data-type="background">
 
         <section id="maintext2" data-speed="10" data-type="background">
<br><br>
+
                <img class="displayed" src="https://static.igem.org/mediawiki/2015/6/68/Graphics2-21.png" width="1026px">
<P style="text-align:center;">
+
<br>
<font color="white">
+
                <img class="displayed" src="https://static.igem.org/mediawiki/2015/1/12/Graphics2-22.png" width="1026px">
Quorum quenching takes advantage of the fact that quorum sensing also plays a role in  expressing virulence, and interferes with the quorum sensing that <br>
+
        </section>
produces virulence. There are many ways of utilizing quorum sensing for medicinal use, and one of the most intuitive and most well-known methods is quorum quenching. <br>
+
Quorum quenching takes advantage of the fact that quorum sensing also plays a role in expressing virulence, and interferes with <br>
+
the quorum sensing that produces virulence. However, for our project this year, we decided to focus on engineering a detection method for antibiotic resistance. <br>
+
For the project, we created a test plasmid and a reporter plasmid. We then transformed competent E. coli with the plasmids to produce a  <br>
+
test cell and a reporter cell.  As shown in the picture below, the test cell produces lactonase, which breaks down AHL, a common auto-inducer in <br>
+
gram-negative bacteria. And the reporter cell produces GFP (or luciferase) which creates a visible difference that we can detect.  <br>
+
Both plasmids were engineered using the BioBrick DNA recombination process.  With such a set up, it will be possible to detect the presence of the test cell, or lactonase.<br><br>
+
  
For the confirmation of our hypothesis, we conducted some experiments. Ideally, mixing AHL with the test cell will break down the AHL. And, adding <br>
 
the reporter after that will not result in any fluorescence. But, if we do the same process with the control bacteria instead of the test cell, <br>
 
there will be fluorescence. As theorized, the control experiments produced fluorescence, but the experiments with the test cell produced no  fluorescence. <br><br>
 
  
<img class="displayed" src="https://static.igem.org/mediawiki/2015/9/9d/Graphics-26.png">
+
 
<br><br>
+
    <!-- Section #12 --!>
<a href="#top" rel="" id="top" class="anchorLink">
+
        <section id="maintext2" data-speed="10" data-type="background">
                 <img class="displayed" src="https://static.igem.org/mediawiki/2015/b/b3/Scroll_arrow_top.PNG"></a> 
+
                <img class="displayed" src="https://static.igem.org/mediawiki/2015/1/1a/Graphics2-23.png" width="1026px">
            <h6 style="text-align:center;">
+
<br>
                <font color="white">
+
                 <img class="displayed" src="https://static.igem.org/mediawiki/2015/c/c7/Graphics2-24.png" width="1026px">
                      To The Top
+
                </font>
+
            </h6>
+
 
         </section>
 
         </section>
  
  
  
 +
    <!-- Section #13 --!>
 +
<h5 style="text-align:center;">
 +
<font color="black">
 +
  Plasmid Construction Protocol
 +
</font>
 +
</h5>
 +
<br>
  
  
     <!-- Section #7 -->
+
     <!-- Section #13 --!>
 
         <section id="maintext" data-speed="10" data-type="background">
 
         <section id="maintext" data-speed="10" data-type="background">
<br><br>
+
<h5 style="text-align:center;">
<h5 style="text-align:center;">
+
<font color="black">
<font color="black">
+
Preliminary Work
Expected Benefits
+
 
</font>
 
</font>
 
</h5>
 
</h5>
<br><br>
+
<br>
  
<P style="text-align:center;">
+
<img class="displayed" src="https://static.igem.org/mediawiki/2015/5/59/Graphics2-25.png" width="1026px">
<font color="black">
+
Thanks to bacteria’s ability to make quick and profound changes in gene transcription, quorum sensing can be <br>
+
used to detect a low amount of signaling molecules and report their presence quickly. With further <br>
+
research and thorough engineering applications, it may be possible to detect other antibiotic-resistant bacteria<br>
+
that are unknown until now.<br><br>
+
  
If it is proven as valid and effective through sufficient tests, this technique could be disseminated to <br>
+
<h5 style="text-align:center;">
hospitals and clinics to test the presence of antibiotic-resistant bacteria. <br>
+
  <font color="black">
  We hope that this technique, if properly adjusted for functional advancement, can detect antibiotic-resistant <br>
+
Material
bacteria in a relatively short time with only a small amount of sample secured from the patient. <br>
+
</font>
This would provide an advantage over the traditional detection methods, culture-based approaches which require <br>
+
</h5>
one or several days of incubation period.<br><br>
+
<br>
  
Because chemicals involved in species-specific quorum sensing is very specific, it might be possible to <br>
+
</section>
dramatically resolve the problem of overnight incubation.  Because an initial sample from <br>
+
a patient is usually contaminated and has only a small concentration of the wanted bacteria, it is often <br>
+
impossible to detect any antibiotic-resistance without purification and amplification through overnight <br>
+
incubation.  But because species-specific quorum sensing involves biochemical that are<br>
+
highly specific, and the quorum sensing chemicals are not affected as much by the contamination, the method <br>
+
utilizing quorum sensing might be applied with relatively less purification processes.  Also, because <br>
+
some quorum sensing mechanisms have built in positive feedback, with the right engineering, <br>
+
the mechanism could work with only a little amplification process.<br><br>
+
  
More innovative detection methods such as quantitative PCR(qPCR) or microarrays, and advanced molecular <br>
 
detection (AMD) are based on accumulated previous data and, thus, render very accurate results, but <br>
 
they require complicated  procedures and heavy equipment.  On the other hand, this quorum sensing-based detection <br>
 
method will provide benefits to patients with handy procedure and quicker detection results. We believe quicker <br>
 
and easy detection of antibiotic-resistant bacteria will lead to better containment of such <br>
 
dangerous bacterial strains.<br><br>
 
  
</font>
+
    <!-- Section #14 --!>
</p>
+
        <section id="maintext" data-speed="10" data-type="background">
 +
<img class="displayed" src="https://static.igem.org/mediawiki/2015/5/59/Graphics2-25.png" width="1026px">
  
<br>
+
<h5 style="text-align:center;">
 +
<font color="black">
 +
Lab Work for Plasmid Construction
 +
</font>
 +
</h5>
 
<br>
 
<br>
  
<a href="#top" rel="" id="top" class="anchorLink"><img class="displayed" src="https://static.igem.org/mediawiki/2015/5/5b/Scroll_arrow_top_Black.png"></a> 
 
<h6 style="text-align:center;"> <font color="black">
 
                  To The Top
 
              </font> </h6>
 
  
        </section>
+
</section>
  
  
  
 +
    <!-- Section #15 --!>
 +
        <section id="maintext" data-speed="10" data-type="background">
 +
<img class="displayed" src="https://static.igem.org/mediawiki/2015/8/85/Graphics-40.png" width="1026px">
 +
<br>
 +
<img class="displayed" src="https://static.igem.org/mediawiki/2015/f/fb/Graphics-41.png" width="1026px">
 +
<br>
 +
<img class="displayed" src="https://static.igem.org/mediawiki/2015/2/2b/Graphics-42.png" width="1026px">
 +
<br>
 +
<img class="displayed" src="https://static.igem.org/mediawiki/2015/2/2b/Graphics-43.png" width="1026px">
 +
<br>
 +
<img class="displayed" src="https://static.igem.org/mediawiki/2015/4/40/Graphics-44.png" width="1026px">
 +
<br>
 +
<img class="displayed" src="https://static.igem.org/mediawiki/2015/0/01/Graphics-45.png" width="1026px">
 +
<br>
 +
<img class="displayed" src="https://static.igem.org/mediawiki/2015/5/52/Graphics-46.png" width="1026px">
 +
<br>
 +
</section>
  
  
     <!-- Section #8 -->
+
     <!-- Section #16 --!>
         <section id="maintext2" data-speed="10" data-type="background">
+
         <section id="maintext" data-speed="10" data-type="background">
<br><br><br>
+
<img class="displayed" src="https://static.igem.org/mediawiki/2015/0/01/Graphics-47.png" width="1026px">
<img class="displayed" src="https://static.igem.org/mediawiki/2015/6/6e/Hr_white.jpg" width="80px" height="2px">
+
 
<br>
 
<br>
 +
<img class="displayed" src="https://static.igem.org/mediawiki/2015/0/03/Graphics-48.png" width="1026px">
 
<br>
 
<br>
<h5 style="text-align:center;">
+
<img class="displayed" src="https://static.igem.org/mediawiki/2015/5/5e/Graphics-50.png" width="1026px">
<font color="white">
+
<br>
Reference
+
<img class="displayed" src="https://static.igem.org/mediawiki/2015/2/2f/Graphics-51.png" width="1026px">
 +
<br>
 +
<img class="displayed" src="https://static.igem.org/mediawiki/2015/1/15/Graphics-52.png" width="1026px">
 +
<br>
 +
<img class="displayed" src="https://static.igem.org/mediawiki/2015/d/df/Graphics-53.png" width="1026px">
 +
<br>
 +
<img class="displayed" src="https://static.igem.org/mediawiki/2015/8/85/Graphics-40.png" width="1026px">
 +
<br>
 +
</section>
 +
 
 +
    <!-- Section #17 --!>
 +
        <section id="maintext" data-speed="10" data-type="background">
 +
<img class="displayed" src="https://static.igem.org/mediawiki/2015/7/7d/Graphics-54.png" width="1026px">
 +
<br>
 +
<img class="displayed" src="https://static.igem.org/mediawiki/2015/c/c1/Graphics-55.png" width="1026px">
 +
<br>
 +
 
 +
<h5 style="text-align:center;">
 +
<font color="black">
 +
Control Experiment
 
</font>
 
</font>
 
</h5>
 
</h5>
<br><br>
+
<br>
  
<P style="text-align:center;">
+
<div class="inner1">
<font color="white">
+
<P style="text-align:center;">First, let's see a video showing our control experiment work:</p><br /><br /></div>
Antibiotic Resistance Threat in the United States 2013, US Department of Health and Human Services, <br>
+
Center for  Disease Control and Prevention About Quorum Sensing<br><br>
+
  
Annual Review of Microbiology, Volume 55:pp 165-199 (volume publication date, October 2001) Melissa B.Miller and Bonnie L. <br>
+
<div align="center">
Bassler Department of Molecular Biology, Princeton University, Princeton, New Jersey <br><br>
+
<video controls>
 +
<source src="https://static.igem.org/mediawiki/2015/0/05/Experiment_full_version.mp4" type="video/mp4">
 +
</video>
 +
</div>
 +
<br /><br />
  
Bacterial Quorum Sensing: Its Role in Virulence and Possibilities for Its Control Steven T. Rutherfold and Bonnie L.Bassler. <br>
+
<div class="inner1">
Cold Spring Harb Perspect Med. 2012.2, Cold Spring Harbor Laboratory Press<br><br>
+
<P style="text-align:left;">
 +
<font color="black">
 +
Purpose: investigate the concentration of AHL; <br>
 +
Find out how much AHL concentration is optimal and how much time it takes for the AHL to express GFP; <br>
 +
Find out how much time it takes for the test cell to break down AHL <br>
  
Quorum Sensing: Bacteria Talk Sense Costi D. Sifri, Oxford Journals, Volume 47, Issue 8 Pp 1070-1076, 2015 <br> Infectious Diseases Society of America <br><br>
+
Protocol:<br>
 +
<b>1.</b> Incubate bacteria overnight at 37C<br />
 +
<b>2.</b> Separate out 1ml of test cell and 1ml of reporter cell<br />
 +
<b>3.</b> Add 3ul of AHL to the test cell<br />
 +
<b>4.</b> Incubate for 30 minutes<br />
 +
<b>5.</b> Add the reporter to the test cell<br />
 +
<b>6.</b> Incubate for 3 hours<br />
 +
<b>7.</b> Move 200ul of the solution into a well plate<br />
 +
<b>8.</b> Put the well plate into the spectronometer<br />
 +
<b>9.</b> View the results<br />
  
Bacterial Quorum Sensing in Pathogenic Relationships Teresa R. de Kievit, Barbara H.Iglewski, Infection and Immunity, <br>
 
Volume 68, September 2000, 2000 American Society for Microbiology
 
 
</font>
 
</font>
 
</p>
 
</p>
 +
</div>
  
  
<br><br><br><br>
 
<a href="#top" rel="" id="top" class="anchorLink"><img class="displayed" src="https://static.igem.org/mediawiki/2015/b/b3/Scroll_arrow_top.PNG"></a> 
 
<h6 style="text-align:center;"> <font color="white">
 
                  To The Top
 
              </font> </h6>
 
 
        </section>
 
  
 +
</section>
  
 
<script>
 
<script>

Latest revision as of 12:14, 18 September 2015








WETLAB
-Protocol-




Protocols

We conducted our experiments by following the protocols below. As an official procedure, lab workers should understand the lab experiment assigned to them along with safety procedures before starting lab work. The protocols are arranged according to the order of experiments we followed.

How to handle reagents.

1. Reagents used in our project, such as restriction enzymes, must be stored in low temperature. The reagents must be stored in the freezer when they are not used, and must be put on ice when taking them out of the freezer for an experiment.

2. Reagents should be added last to the solution, because reagents are sensitive to inactivation by pH and ionic conditions that deviate from their storage and reaction buffers. After adding reagents, the mixed solution should be mixed completely.


Protocols to store materials and maintain
usage history of each material.

1. Reporter cell, test cell and competent cell (Top 10 invitrogen) must be kept at 4°C and frequently used reagents, reagents, DNA plasmids should be kept at −20°C in the freezer.

2. We use triple distilled water (or DDH2O) to make LB broth. Triple distilled water is kept at lab temperature (around 18 °C or lower).

3. Other materials such as yeast and NaCl are stored and maintained under the responsibility of Gachon Molecular Biology Lab.

4. We have to record the history of each material, including if plasmids/reporter cell/ test cell/ AHL have been frozen and if so, when it is used.

LB Medium

1. To prevent contamination, we only used LB medium made within three days.

2. Materials: Sodium Chloride (LB Media, Sigma), Trypton(LB Media, Sigma), Yeast Extract(LB Media Sigma), ddH2O (triple distilled water)

3. Equipment: autoclave, electronic scale.

4. Protocol For 200mL LB bottle
1) 2 g of Sodium Chloride to a final concentration of 0.17 M
2) 2g of 1%(w/v) Bacto™ tryptone
3) 1g of 0.5% (w/v) yeast extract
4) ddH2O to 200 mL
5) Autoclave for 20 min within 2 hours
6) Keep at room temperature



LB Agar Plates and Addition of Antibiotics

1. We have used LB (solidified lysogeny broth), rich growth medium for E.coli, in our experiments.

2. Just before pouring the solution into petri dishes, an antibiotic can be added for resistance selection. We followed the normal working concentrations such as:

- chloramphenicol: 25 μg/mL (Chloramphenicol stock is dissolved in ethanol) In case of using ampicillin: 100 μg/mL
- normal stock concentrations:1000-fold

3. Material to make LB plates:
Sodium Chloride (LB Media, Sigma) Bacto™ tryptone (LB Media, Sigma) yeast extract (LB Media, Sigma) Bacto™ agar (LB Media, Sigma) ddH2O (triple distilled water) 1000x chloramphenicol or ampicillin

4. LB agar preparation protocol
We usually make 1liter bottle for LB Agar
1) 200 mL LB prepared fresh, non-autoclaved
2) 3 g agar
3) Shake until all solids are dissolved
4) Autoclave for 20 min within 2 hr
5) Keep it cool until it reaches around 40-50 °C
6) Add 200 μL of 1000x chloramphenicol and gently stir it. Be careful not to shake the bottle too long/hard so that bubbles are created.
7) Pour into empty petri dishes just enough to cover the surface (~20 mL per plate). In case that bubbles are in the plate, heat the plate surface carefully with a burner only until the bubbles are burst but the solution is heated.
8) Leave the plates at room temperature around one hour until it is solidified.
9) Solidified plates should be turned upside down for a few hours at room temperature, then stored at 4°C.



Overnight Cultures with Antibiotics

1. We have conducted overnight culture for a single bacterial strain which process needs a plate or medium with single colonies and LB containing chloramphenicol.

2. Material Needed chloramphenicol: 25 μg/mL Normal stock concentrations: 1000-fold higher In case of using ampicillin: 100 μg/mL

3. Protocol
1) Quickly burn the neck of a bottle containing LB medium before pouring it out into a tube. Even the slightest contamination of LB will be damaging.
2) Add chloramphenicol or ampicillin to give the appropriate concentration
3) Scoop one colony from the plate with a sterile micropipette tip
4) Immediately stick the tip into the tube containing the medium and chloramphenicol or ampicillin
5) Incubate at 37°C with the shaking incubator overnight.



Agarose Gel Electrophoresis

1. Agarose gel electrophoresis is used for separation and analysis of larger (>100 bases in length) nucleic acids under non-denaturing conditions.

2. Analysis requires that the gel contains a DNA stain visible under UV light. Since the stain interacts with nucleic acids and is therefore potentially mutagenic, always wear nitrile gloves when working with agarose gels.

3. Use protective glasses when using the UV light box.

4. Material Needed
Agarose
1x TBE
Sybr®Safe
Loading dye mix
DNA ladder size marker
DNA samples

5. Protocol:
1) The gel tray must be on a level surface.
2) Insert the comb into the gel tray at one end ~1 cm from the edge.
3) For a 1% 150 mL agarose gel, weigh 1.5 g of agarose in a 500 mL conical flask.
4) Add 150 mL 1x TBE buffer.
5) To dissolve the agarose in the buffer, swirl to mix and microwave for a few minutes taking care not to boil the solution out of the flask.
6) Remove the flask occasionally and check whether the agarose has dissolved completely.
7) Let the agarose solution cool down.
8) Once the solution is touchable, add the DNA stain.
9) Check the stock concentration as the working concentration for ethidium bromide is 0.5 μg/mL while for Sybr®Safe it is simply 1x.
10) Pour the gel solution into the gel tray.
11) Remove any air bubbles with a pipette tip.
12) Put in comb.
13) The gel will solidify while cooling down to room temperature, which usually takes about 30 min.
14) Running the gel by the following procedure
a. Release the gel tray from the tape or casting stand.
b. Place the gel tray into the buffer chamber and remove the comb carefully
c. Add 1x TBE buffer until the gel is completely covered.
d. Take the DNA sample (~0.2 μg) and mix with loading dye.
e. Load the size marker mixed in 1x loading dye (~6 μL final volume) into a middle well.
f. Load the samples into the other wells while writing down which lanes have which samples.
g. Put the lid onto the buffer chamber and connect it to the power supply.
h. Run the gel at 100 V for 30–60 min. Neither of the two dyes should be run off the gel.
i. Stop the run and bring the gel to a UV table to visualize the gel bands.
j. Take a picture of the gel.



Gel Extraction

QIAquick®Gel Extraction Kit
Notes before starting

1. This protocol is for the purification of up to 10μg DNA (70bp to 10kb).

2. The yellow color of buffer QG indicates a pH ≤ 7.5. DNA adsorption to the membrane is only efficient at pH ≤ 7.5.

3. Add ethanol (96%100%) to Buffer PE before use (see bottle label for volume).

4. Isopropanol (100%) and a heating block or water bath at 50°C are required.

5. All centrifugation steps are carried out at 17,900 x g (13,000 rpm) in a convetional table-top microcentrifuge.

6. Symbosl: ● centrifuge processing; ▲ vacuum processing.

1. Excise the DNA fragment from the agarose gel with a clean, sharp scalpel.
2. Weigh the gel slice in a colorless tube. Add 3 volumes Buffer QG to 1 volume gel (100 mg gel ~ 100μl). The maximum amount of gel per spin column is 400mg. For >2% agarose gels, add 6 volumes Buffer QG.

3. Incubate at 50°C for 10 min (or until the gel slice has completely dissolved). Vortex the tube every tube every 2-3 min to help dissolve gel. After the gel slice has dissolved completely, check that the color of the mixture is yellow (similar to Buffer QG without dissolved agarose). If the color of the mixture is orange or violet, add 10μl 3 M sodium acetate, pH 5.0, and mix. The mixture turns yellow.

4. Add 1 volume isopropanol to the sample and mix.

5. Place a QIAquick spin column in ● a provided 2ml collection tube or into ▲ a vacuum amnifold. To bind DNA, aply the sample to the QIAquick column and ● centrifuge for 1 min or ▲ apply vaccum to the manifold untill all the samples QIAquick column back into the same tube. For example volumes of 0> 800μl, load and spin/apply vacuum again.

6. If the DNA will subsequently be used for sequenceing, in vitro transcruption, or microinjection, add 500μl Buffer QG to the QIAquick column and ● centrifuge for 1 min or ▲ apply vaccum. ● Discard flow through and place the QIAquick column back into the same tube.

7. To wash, add 750μl Bufick column and fer PE to QIAquickcolumn and ● centrifuge for 1 min or ▲ apply vacuum. ●Discard flow-through and place the QIAquick column back into the same tube.

8. Place QIAquick column into a clean 1.5 ml microcentrifuge tube.

9. To elute DNA, add 50μl Buffer EB (10mM Tris•Cl, pH 8.5) or water to the center of the QIAquick memberane and centrifugethe colum for 1 min. For increased DNA concentration, add 30μl Buffer EB to the center of the QIAquick membrance, let the column stand for 1 min, and then centrifuge for 1 min. After the addition of Buffer EB to the QIAquick membrance, increasing the incubation time to up to 4 min can increase the yield of purified DNA.

10. If the Purified DNA is to be analyzed on a gel, add 1 volume of Loading Dye to 5 volumes of purified DNA. Mix the solution by pipetting up and down before loading the gel.



Transformation Procedure

Use this procedure to transform One Shot* TOP10 chemically competent E. coli. We recommend including the pUC19 control plasmid DNA supplied with the kit (10 pg/ μl in 5mM TrisHCl, 0.5mM EDTA, pH 8) in your transformation experiment to verify the efficiency of the competent cells. Do not use these cells for electroporation.


1. Thaw, on ice, one vial of One Shot® TOP 10 chemically competent cells for each transformation.

2. Add 1 to 5 μl of the DNA (10pg to 100 ng) into a vial of One Shot® cells and mix gently. Do not mix by pipetting up and down. For the pUC19 control, add 10pg (1μl) of DNA into a separate vial of One Shot® cells and mix gently.

3. Incubate the vial(s) on ice for 30 mins.

4. Heatshock the cells for 30 secs at 42°C without

5. Remove the vial(s) from the 42°C bath and place them on ice for 2 mins

6. Asceptically add 250 μl of prewarmed S.O.C. Medium to each vial.

7. Cap the vial(s) tightly and shake horizontally at 37°CC for 1 hour at 225 rpm in shaking incubator.

8. Spread 20200 μl from each transformation on a prewarmed selective plate and incubate overnight at 37°C. We recommend that you plate two different volumes to ensure that at least one plate will have wellspaced colonies. For the pUC19 control, dilute the transformation mix 1:10 into LB Medium (e.g. remove 100μl of the transformation mix and add to 900μl of LB Medium) and plate 25-100μl.

9. Store the remaining transformation mix at +4°C. Additional cells may be plated the next day, if desired.

10. Invert the selective plate(s) and incubate at 37°C

Reporter Cell Assay Protocol

1. Measure out 1ml of the cells into tubes.

2. Thaw out AHL on ice

3. Put 3ul of AHL in test cell

4. Wait 30 minutes

5. Add 1ml of reporter cell to the test cell

6. Wait 3 hours

7. Put 200ul of the mixture into a well plate

8. Put the well plate in the spectrometer to observe the results. (various independent variables such as time or the amounts of the chemical were varied in our different experiments.) (It is usually a good idea to have a control group with empty LB medium instead of the test cell running alongside the main experiment.)


Mini and Midi preparation

QIAGEN® Plasmid Mini and Midi Kits
Notes before starting

1. Add RNase A solution to Buffer P1, mix, and store at 2-8°C

2. Optional: Add LyseBlue® reagent to Buffer P1 at a ratio of 1:1000.

3. Prechill Buffer P3 at 4°C. Check Buffer P2 for SDS precipitation

4. Isopropanol and 70% ethanol are required.

5. Symbols: ● QIAGEN Plasmid Mini Kit; ■ QIAGEN Plasmid Midi Kit



1. Harvest overnight bacterial culture by centrifuging at 6000 x g for 15 mins at 4°C.

2. Resuspend the bacterial pellet in ● 0.3ml or ■ 4ml Buffer P1.

3. Add ● 0.3ml or ■ 4ml Buffer P2, mix thoroughly by vigorously inverting 4-6 times, and incubate at room temperature (1525°C) for 5 mins. If using LyseBlue reagent, the solution will turn blue.

4. Add ● 0.3ml or ■ 4 ml prechilled Buffer P3, mix thoroughly by vigorously inverting 4-6times. Incubate on ice for ● 5 mins or ■ 15 mins. If using LyseBlue reagent, mix the solution until it is colorless.

5. ●: Centrifuge at 14,000-18,000 x g for 10 mins at 4°C. Re-centrifuge if supernatant is not clear ■: Centrifuge at 20,000 x g for 30 mins at 4°C. Re-centrifuge the super natant at 20,000 x g for 15 mins at 4°C

6. Equlibriate a QIAGEN tip ● 20 or ■ 100 by applying ● 1ml or ■ 4ml Buffer QBT, and allow column to empty by gravity flow.

7. Apply these supernatant from step 5 to the QIAGEN tip and allow it to enter the resin by gravity flow.

8. Was the QIAGEN top with ● 2 x 2 ml or ■ 2 x10 ml Buffer QC. Allow Buffer QC to move through the QIAGEN top by gravity flow.

9. Elute DNA with ● 0.8 ml or ■ 5 ml Buffer QF into a clean ● 2 ml or ■ 15 ml vessel. For constructs larger than 45 kb, prewarming the elution buffer to 65°C may help to increase the yield.

10. Precipitate DNA by adding ● 0.56 ml or ■ 3.5 ml room temperature isopropanol to the eluted DNA and mix. Centrifuge at 15,000 x g for 30 mins at 4°C. Carefully decant the supernatant.

11. Wash the DNA pellet with ● 1 ml or ■ 2ml room temperature 70% ethanol and centrifuge at 15,000 x g for 10 mins. Carefully decant the supernatant.

12. Air dry pellet for 5-10 mins and redissolve DNA in a suitable volume of appropriate buffer (e.g., TE buffer, pH 8.0, or 10 mM TrisCl, pH 8.5).

Ligation

Quick Ligation Protocol

1. Combine 50 ng of vector with a 3-fold molar excess of insert. Adjust volume to 10μl with dH2O.
2. Add 10μl of 2X Quick Ligation Reaction Bugger and mix.
3. Add 1μl of Quick T4 DNA Ligase and mix thoroughly.
4. Centrifuge briefly and incubate at room temperature (25°C) for 5mins.
5. Chill on ice, then transform or store at -20°C
6. Do not heat inactivate. Heat activation dramatically reduces transformation efficiency.

Enzyme Digestion



Plasmid Construction Protocol

Preliminary Work

Material

Lab Work for Plasmid Construction

















Control Experiment

First, let's see a video showing our control experiment work:





Purpose: investigate the concentration of AHL;
Find out how much AHL concentration is optimal and how much time it takes for the AHL to express GFP;
Find out how much time it takes for the test cell to break down AHL
Protocol:
1. Incubate bacteria overnight at 37C
2. Separate out 1ml of test cell and 1ml of reporter cell
3. Add 3ul of AHL to the test cell
4. Incubate for 30 minutes
5. Add the reporter to the test cell
6. Incubate for 3 hours
7. Move 200ul of the solution into a well plate
8. Put the well plate into the spectronometer
9. View the results