Difference between revisions of "Team:HUST-China/Modeling on Cellular Level"

 
(58 intermediate revisions by 6 users not shown)
Line 5: Line 5:
 
  <meta name="viewport" content="width=device-width,initial-scale=1">
 
  <meta name="viewport" content="width=device-width,initial-scale=1">
  
  <title>Team:HUST-China:Results</title>
+
  <title>Team:HUST-China:Modeling</title>
<link href="http://cdn.bootcss.com/bootstrap/3.3.5/css/bootstrap.min.css"rel="stylesheet">
+
<link rel="stylesheet" type="text/css"
<script src="http://cdn.bootcss.com/jquery/1.11.3/jquery.min.js"></script>
+
href="https://2015.igem.org/Team:HUST-China/CSS?action=raw&ctype=text/css" />
<script src="http://cdn.bootcss.com/bootstrap/3.3.5/js/bootstrap.min.js"></script>
+
 
 +
<script type="text/javascript" src="https://2015.igem.org/Team:HUST-China/jquery?
 +
action=raw&ctype=text/javascript"></script>
 +
 
 +
<script type="text/javascript" src="https://2015.igem.org/Team:HUST-China/JS?
 +
action=raw&ctype=text/javascript"></script>
  
 
<style>
 
<style>
Line 50: Line 55:
 
           top: 0px;}
 
           top: 0px;}
  
.picture{ width: 700px;
+
.picture{ width: 680px;
 
    height: auto;
 
    height: auto;
 
         margin-bottom:30px;  
 
         margin-bottom:30px;  
         margin-left: 50px;}
+
         margin-left: 30px;}
  
  
Line 79: Line 84:
 
    z-index:1;}
 
    z-index:1;}
  
.first-menu{float: left;
+
.first-menu{float: left;
margin-left: 1%;
+
 
  font-size:19px;  
 
  font-size:19px;  
      max-width: 22%;
+
      max-width: 20%;
 
                 padding-top:5px;}
 
                 padding-top:5px;}
  
 
  .other-menu{float: left;
 
  .other-menu{float: left;
  margin-left:1.2%;
+
  margin-left:1%;
 
  font-size:19px;
 
  font-size:19px;
      max-width: 22%;
+
      max-width: 20%;
 
                     padding-top:5px;}
 
                     padding-top:5px;}
 +
  
 
  .navbar .nav > li .dropdown-menu {margin: 0;}
 
  .navbar .nav > li .dropdown-menu {margin: 0;}
Line 113: Line 118:
 
  margin-bottom: 0px;
 
  margin-bottom: 0px;
 
  padding-left: 0px;
 
  padding-left: 0px;
                                margin-left:0px;}
+
                margin-left:0px;}
  
 
   
 
   
#pic{  background-image: url(https://static.igem.org/mediawiki/2015/3/3a/Reef4.jpg);
+
#pic{  background-image: url(https://static.igem.org/mediawiki/2015/d/d6/HUST_modeling.jpg);
 
                 width:1349px;
 
                 width:1349px;
 
                 height:650px;
 
                 height:650px;
Line 132: Line 137:
 
     }
 
     }
 
     .pic_a{float: left;
 
     .pic_a{float: left;
             margin-top:50px;
+
             margin-top:35px;
 
             width: 1349px;
 
             width: 1349px;
 
             text-align:center;
 
             text-align:center;
Line 138: Line 143:
  
 
#maodian{float: left;
 
#maodian{float: left;
                    top: 50px;
+
              top: 50px;
 
  position: fixed;
 
  position: fixed;
 
  margin-top: 70px;    
 
  margin-top: 70px;    
Line 150: Line 155:
 
{ background-color:#5d96a3;
 
{ background-color:#5d96a3;
 
margin-left: 0px;
 
margin-left: 0px;
width: 200px;
+
width: 220px;
font-size: 16px;
+
font-size: 14px;
 
padding-left: 1px;
 
padding-left: 1px;
 
     }
 
     }
Line 221: Line 226:
 
 
 
<!--悬浮菜单-->
 
<!--悬浮菜单-->
 +
<!--悬浮菜单-->
 
<div class="navbar">
 
<div class="navbar">
 
    <div class="navbar-inner">
 
    <div class="navbar-inner">
Line 227: Line 233:
 
              <li class="first-menu"><a href="https://2015.igem.org/Team:HUST-China">HOME</a>
 
              <li class="first-menu"><a href="https://2015.igem.org/Team:HUST-China">HOME</a>
 
                </li>      
 
                </li>      
                <li class="dropdown other-menu" id="accountmenu"><a href="https://2015.igem.org/Team:HUST-China/Background">PROJECT<b class="caret"></b></a>
+
                <li class="dropdown other-menu" id="accountmenu"><a href="https://2015.igem.org/Team:HUST-China/Project">PROJECT<b class="caret"></b></a>
 
                <ul class="dropdown-menu">
 
                <ul class="dropdown-menu">
 
                                 <li><a href="https://2015.igem.org/Team:HUST-China/Background">Background</a></li>
 
                                 <li><a href="https://2015.igem.org/Team:HUST-China/Background">Background</a></li>
Line 237: Line 243:
 
                         </li>
 
                         </li>
  
                         <li class="dropdown other-menu" id="accountmenu"><a href="https://2015.igem.org/Team:HUST-China/Results">WETLAB<b class="caret"></b></a>
+
                         <li class="dropdown other-menu" id="accountmenu"><a href="https://2015.igem.org/Team:HUST-China/Wetlab">WETLAB<b class="caret"></b></a>
 
                <ul class="dropdown-menu">
 
                <ul class="dropdown-menu">
 
<li><a href="https://2015.igem.org/Team:HUST-China/Results">Results</a></li>
 
<li><a href="https://2015.igem.org/Team:HUST-China/Results">Results</a></li>
Line 249: Line 255:
 
                         </li>
 
                         </li>
  
                         <li class="dropdown other-menu" id="accountmenu"><a href="https://2015.igem.org/Team:HUST-China/Basic_part">PARTS<b class="caret"></b></a>
+
                         <li class="dropdown other-menu" id="accountmenu"><a href="https://2015.igem.org/Team:HUST-China/Parts">PARTS<b class="caret"></b></a>
 
                <ul class="dropdown-menu">                          
 
                <ul class="dropdown-menu">                          
 
                        <li><a href="https://2015.igem.org/Team:HUST-China/Basic_part">Basic Parts</a></li>
 
                        <li><a href="https://2015.igem.org/Team:HUST-China/Basic_part">Basic Parts</a></li>
 
                        <li class="divider"></li>
 
                        <li class="divider"></li>
                        <li><a href="https://2015.igem.org/Team:HUST-China/Basic_part/#2">Composite Parts</a></li>   
+
                        <li><a href="https://2015.igem.org/Team:HUST-China/Basic_part#2">Composite Parts</a></li>                          <li class="divider"></li>
 +
                        <li><a href="https://2015.igem.org/Team:HUST-China/Part_Collection">Part Collection</a></li>   
 
                    </ul>
 
                    </ul>
 
                         </li>
 
                         </li>
Line 259: Line 266:
 
                <li class="dropdown other-menu" id="accountmenu"><a href="https://2015.igem.org/Team:HUST-China/Modeling">MODELING<b class="caret"></b></a>  
 
                <li class="dropdown other-menu" id="accountmenu"><a href="https://2015.igem.org/Team:HUST-China/Modeling">MODELING<b class="caret"></b></a>  
 
                             <ul class="dropdown-menu">
 
                             <ul class="dropdown-menu">
 +
                                        <li><a href="https://2015.igem.org/Team:HUST-China/Modeling">Overiew</a></li>
 +
                                        <li class="divider"></li>
 
                          <li><a href="https://2015.igem.org/Team:HUST-China/Modeling on Cellular Level">Modeling on Cellular Level</a></li>
 
                          <li><a href="https://2015.igem.org/Team:HUST-China/Modeling on Cellular Level">Modeling on Cellular Level</a></li>
 
                          <li class="divider"></li>
 
                          <li class="divider"></li>
Line 266: Line 275:
  
 
                                 
 
                                 
                 
+
                <li class="dropdown other-menu" id="accountmenu"><a href="https://2015.igem.org/Team:HUST-China/Practices">HUMAN PRACTICES</a>
                <li class="dropdown other-menu" id="accountmenu">
+
                                       
                    <a class="dropdown-toggle" data-toggle="dropdown" href="https://2015.igem.org/Team:HUST-China/Practices">HUMAN PRACTICES</a>
+
                                         
+
 
                </li>
 
                </li>
  
              <li class="dropdown other-menu" id="accountmenu">
+
              <li class="dropdown other-menu" id="accountmenu"><a href="https://2015.igem.org/Team:HUST-China/Safety">OTHERS<b class="caret"></b></a>
                    <a class="dropdown-toggle" data-toggle="dropdown" href="https://2015.igem.org/Team:HUST-China/Safety">OTHERS<b class="caret"></b></a>
+
 
                    <ul class="dropdown-menu">
 
                    <ul class="dropdown-menu">
 
                        <li><a href="https://2015.igem.org/Team:HUST-China/Safety">Safety</a></li>
 
                        <li><a href="https://2015.igem.org/Team:HUST-China/Safety">Safety</a></li>
Line 294: Line 300:
 
           $('.dropdown-toggle').dropdown(); }); </script>
 
           $('.dropdown-toggle').dropdown(); }); </script>
 
</div>
 
</div>
<!--标题栏-->
+
 
 +
<!--标题栏-->
 
  <div id="pic" >
 
  <div id="pic" >
  <img class="title" src="https://static.igem.org/mediawiki/2015/9/90/HUST_PARTS.png"/>
+
  <img class="title" src="https://static.igem.org/mediawiki/2015/f/f4/HUST_MODELING_6.PNG"/>
 
  <br>
 
  <br>
  <div class="pic_a" >
+
  <div class="pic_a" >
<h4 style="color:white">Scroll down to read more</h4>
+
<h4 align="center" style="color:white"><b>click it~</b></h4>
 
      <img style="cursor:pointer;" id="to_des" src="https://static.igem.org/mediawiki/2015/8/80/White.png"/>
 
      <img style="cursor:pointer;" id="to_des" src="https://static.igem.org/mediawiki/2015/8/80/White.png"/>
 
  </div>
 
  </div>
 
  </div>
 
  </div>
 +
 +
<!--锚点-->
 +
<div id="maodian">
 +
<img src="https://static.igem.org/mediawiki/2015/d/da/Maodian.png" >
 +
<ul class="ul" >
 +
<li class="li"><a href="#1" class="btn btn-default btn-lg">Modeling on Cellular Level</a></li>
 +
<li class="li"><a href="#2" class="btn btn-default btn-lg">Darkness Induction System</a></li>
 +
<li class="li"><a href="#3" class="btn btn-default btn-lg">Surface Display System of Si-tag</a></li>
 +
<li class="li"><a href="#4" class="btn btn-default btn-lg">Expression of Mcfp-3</a></li>
 +
<li class="li"><a href="#5" class="btn btn-default btn-lg">R&S Analysis
 +
</a></li>
 +
</ul>
 +
</div>
 +
  
 
  <!--描述-->
 
  <!--描述-->
 
 
 
 
 
+
     
    <div align="center" class="description"><a name="1"></a><br>
+
  <div align="center" class="description"><a name="1"></a><br>
 
     <div class="dongxi"></div>
 
     <div class="dongxi"></div>
        With the benefit of synthetic biology, we built up our network with some characterized parts to carry out the mission of sand solidification. However, whether our circuit will be able to achieve its goal depends on the key to the following questions.<br>
+
    <h2 style="color:black" align="left"><b>Modeling on Cellular Level</b></h2><br>
- Will the darkness induction system be able to switch efficiently to control the expression of target proteins?<br>
+
    <p>With the benefit of synthetic biology, we built up our kit, Euk.Cement, with some characterized parts to carry out the mission of sand solidification. However, whether our kit will be able to achieve its goal depends on the answers to the following questions.<br>
- How much Si-tag and Mcfp-3 our strains produce in the end?<br>
+
- Will the darkness induction system be able to switch efficiently to control the expression of target proteins?<br>
- What strategy should we take in practice to make full use of our product?<br>
+
- How much Si-tag and Mcfp-3 our strains produce in the end?<br>
 +
- What strategy should we take in practice to make full use of our product?<br>
 +
        </p>
 +
<p>The answer to these questions will be shown in our modeling as well as the guidance for future wet-lab experiments.</p>
  
<p>The answer to these questions will be shown in our modeling as well as the guidance for future wet-lab experiments.</p>
+
<p>To ensure that Euk.Cement is capable, we built a DDEs (Delay Differential Equations) model based on <b>Michaelis-Menten equation</b><sup>[1]</sup> and <b>Chemical reaction rate equation</b><sup>[2]</sup>, which includes three parts, to get the insight of how each part works cooperatively.</p>
 +
The code of our DDEs model can be downloaded <a href="https://static.igem.org/mediawiki/2015/6/68/HUST_codes.zip"><b>here.</b></a>
  
<p>To ensure that our circuit is capable, we built a DDEs (Delay Differential Equations) model based on Michaelis-Menten equation and Chemical reaction rate equation, which includes three parts, to get the insight of how each part works cooperatively.</p>
+
<br><br><br>
<a><p> The code of our DDEs model can be downloaded here.</p></a>
+
  
<h3 style="color:black" align="left"><b>Basic Parts</b></h3><br>
+
    <h3 style="color:black" align="left"><b>Parameters</b></h3><br>
             <h4 style="color:black" align="left"><b>1.Light Control</b></h4><br>
+
             The description of parameters, their values<sub>[5]</sub></b> and the references involved in this model are listed in a table.<br>
 
+
<h4 style="width:800px;margin-top:30px;text-align:center" align:center>Brief Parameter Table of DDEs Model</h4>
        <table border="1">
+
<table border="1">
 
             <tr>
 
             <tr>
<th>Part Number</th>
+
<th> Parameter </th>
<th>Description</th>
+
<th> Description </th>
<th>Abbreviation</th>
+
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td><a href="http://parts.igem.org/Part:BBa_K1592005">BBa_K1592005</a></td>
+
<td> copynum<sub>pRMH120</sub> </td>
<td>GalBD-CRY2 Fusion for Yeast-Two-Hybrid</td>
+
<td> copy number of plasmid pRMH120 </td>
<td>BD-CRY2</td>
+
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td><a href="http://parts.igem.org/Part:BBa_K1592006">BBa_K1592006</a></td>
+
<td> copynum<sub>pZS3</sub> </td>
<td>GalAD-CIB1 Fusion for Yeast-Two-Hybrid</td>
+
<td> copy number of plasmid pZS3 </td>
<td>AD-CIB1</td>
+
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td><a href="http://parts.igem.org/Part:BBa_K1592015">BBa_K1592015</a></td>
+
<td> trc<sub>1</sub> </td>
<td>photoreceptor cryptochrome 2</td>
+
<td> rate of mCRY2_BD transcription </td>
<td>CRY2</td>
+
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td><a href="http://parts.igem.org/Part:BBa_K1592016">BBa_K1592016</a></td>
+
<td> trc<sub>2</sub> </td>
<td>a basic helix-loop-helix protein</td>
+
<td> rate of mCIB1_AD transcription </td>
<td>CIB1</td>
+
 
</tr>
 
</tr>
</table>
+
<tr>
<p>Our light-control system is based on the Yeast-Two-Hybrid system. Cryptochrome 2 (CRY2) is a blue light stimulated photoreceptor, when exposed to blue light, it would interact with CIB1. A Gal4 DNA sequence was fused to their C terminus, thus the interaction between two proteins would activate the downstream expression.<br>
+
<td> trc<sub>3</sub> </td>
We measured β-galactosidase activity as the validation test of our Light-control system.
+
<td> rate of mRox1 transcription </td>
  </p>
+
    <div class="box">
+
    <a href="/ File:HUST part2.png" >
+
    <img alt="" src="https://static.igem.org/mediawiki/2015/8/8e/HUST_part2.png" class="picture">
+
    </a>
+
</div>
+
 
+
            <h4 style="color:black" align="left"><b>2.Viscous Protein</b></h4><br>
+
            <p><b>Mcfp</b></p>
+
          <table border="1">
+
            <tr>
+
<th>Part Number</th>
+
<th>Description</th>
+
<th>Abbreviation</th>
+
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td><a href="http://parts.igem.org/Part:BBa_K1592001">BBa_K1592001</a></td>
+
<td> trc<sub>4</sub> </td>
<td>Mytilus californianus foot protein 3(Mcfp3) variant 3</td>
+
<td> rate of mRox1 basic transcription </td>
<td>Mcfp3</td>
+
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td><a href="http://parts.igem.org/Part:BBa_K1592003">BBa_K1592003</a></td>
+
<td> trl<sub>1</sub> </td>
<td>Mcfp3 with LIP2 prepro</td>
+
<td> rate of CRY2_BD translation </td>
<td>LIP-Mcfp</td>
+
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td><a href="http://parts.igem.org/Part:BBa_K15920017">BBa_K1592017</a></td>
+
<td> trl<sub>2</sub> </td>
<td>Mcfp3 with XPR2 pre</td>
+
<td> rate of CIB1_AD translation </td>
<td>XPR2-Mcfp</td>
+
 
</tr>
 
</tr>
</table>
+
<tr>
<p>Mcfp-3 is foot protein secreted from Mytilus californianus. The protein is of significance to the formation of byssus to help mussels permanently or temporarily tether to the surface of solid surface of reef or ship-body.<br>
+
<td> trl<sub>3</sub> </td>
LIP2 and XPR2 are signal peptides. Signal peptide is added to the behind of Mcfp3 sequence, thus Mcfp can be secreted out of cell.
+
<td> rate of Rox1 translation </td>
            </p>
+
 
+
            <p><b>Si-tag Collection</b></p>
+
    <table border="1">
+
            <tr>
+
<th>Part Number</th>
+
<th>Description</th>
+
<th>Abbreviation</th>
+
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td><a href="http://parts.igem.org/Part:BBa_K1592007">BBa_K1592007</a></td>
+
<td> trl<sub>4</sub> </td>
<td>LIP prepro + E. coli ribosomal protein L2 (1-60) + YLcwp3 Fusion</td>
+
<td> rate of Si_Tag translation </td>
<td>Si-tag1-his</td>
+
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td><a href="http://parts.igem.org/Part:BBa_K1592008">BBa_K1592008</a></td>
+
<td> trl<sub>5</sub> </td>
<td>LIP prepro + E. coli ribosomal protein L2 (61-202) + YLcwp3 Fusion</td>
+
<td> rate of Mcfp-3 translation </td>
<td>Si-tag2-his</td>
+
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td><a href="http://parts.igem.org/Part:BBa_K1592009">BBa_K159209</a></td>
+
<td> trf<sub>1</sub> </td>
<td>LIP prepro + E. coli ribosomal protein L2 (203-273) + YLcwp3 Fusion</td>
+
<td> rate of photoactivation of CRY2_BD </td>
<td>Si-tag3-his</td>
+
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td><a href="http://parts.igem.org/Part:BBa_K15920010">BBa_K1592010</a></td>
+
<td> trf<sub>-1</sub> </td>
<td>LIP2 prepro + E. coli ribosomal protein L2 (1-202)+ YLcwp3 Fusion</td>
+
<td> rate of photoinactivation of CRY2_BD </td>
<td>ST12</td>
+
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td><a href="http://parts.igem.org/Part:BBa_K1592011">BBa_K1592011</a></td>
+
<td> trf<sub>2</sub> </td>
<td>LIP prepro + E. coli ribosomal protein L2 (61-273) + YLcwp3 Fusion</td>
+
<td> rate of photoactivation of CIB1_AD </td>
<td>ST23</td>
+
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td><a href="http://parts.igem.org/Part:BBa_K1592012">BBa_K159212</a></td>
+
<td> trf<sub>-2</sub> </td>
<td>LIP prepro + E. coli ribosomal protein L2 (1-60,203-273) + YLcwp3 Fusion</td>
+
<td> rate of photoinactivation of CIB1_AD </td>
<td>ST13</td>
+
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td><a href="http://parts.igem.org/Part:BBa_K1592013">BBa_K1592013</a></td>
+
<td> trlc<sub>1</sub> </td>
<td>LIP prepro + E. coli ribosomal protein L2 (1-60,GS linker,202-273) + YLcwp3</td>
+
<td> translocation rate of Si_Tag to membrane </td>
<td>ST1L3-his</td>
+
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td><a href="http://parts.igem.org/Part:BBa_K1592014">BBa_K1592014</a></td>
+
<td> trlc<sub>2</sub> </td>
<td>LIP prepro + E. coli ribosomal protein L2 (1-273) + YLcwp3</td>
+
<td> translocation rate of Mcfp-3 to extracellular </td>
<td>ST123</td>
+
 
</tr>
 
</tr>
</table>
+
<tr>
            <p>This collection consists of several Si-tag proteins. Si-tag is 50S ribosomal protein L2 in the genome of E.coli, which was found to bind tightly to silicon particles. The Si-tag consists of three domains showing different binding strength. We combined the single domain, and tested their final binding strength.
+
<td> deg<sub>1</sub> </td>
            </p>
+
<td> rate of mCRY2_BD degradation </td>
          <div>
+
          <img class="picture" src="https://static.igem.org/mediawiki/2015/8/8e/HUST_part2.png">
+
          </div>
+
<p>Besides, we added LIP prepro and YLcwp3(see below) to the terminals of Si-tag, thus Si-tag can be secreted then surface displayed on the cell wall.</p>
+
 
+
<p><a href="https://2015.igem.org/Team:HUST-China/Results#4">Click HERE or part number to see more details.</a></p>
+
 
+
    <h4 style="color:black" align="left"><b>3.Secrete and Surface display</b></h4><br>
+
          <table border="1">
+
            <tr>
+
<th>Part Number</th>
+
<th>Description</th>
+
<th>Abbreviation</th>
+
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td><a href="http://parts.igem.org/Part:BBa_K1592000">BBa_K1592000</a></td>
+
<td> deg<sub>2</sub> </td>
<td>LIP2 prepro(signal peptide)</td>
+
<td> rate of CRY2_BD degradation </td>
<td>LIP2 prepro</td>
+
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td><a href="http://parts.igem.org/Part:BBa_K1592002">BBa_K1592002</a></td>
+
<td> deg<sub>3</sub> </td>
<td>Yarrowia lipolytica cell wall protein 3</td>
+
<td> rate of mCIB1_AD degradation </td>
<td>YLcwp3</td>
+
 
</tr>
 
</tr>
</table>
+
<tr>
<p>LIP2 prepro is a signal peptide. When fused to the N-terminal of interest protein, the expression products will be secreted out of cell.</p>
+
<td> deg<sub>4</sub> </td>
 
+
<td> rate of CIB1_AD degradation </td>
<p>YLcwp3, also as an anchor domain, is a cell wall protein. When fused to the C-terminal of interest protein, the expression products will be displayed on the cell wall.</p>
+
</tr>
 
+
<tr>
<h4 style="color:black" align="left"><b>4.Others</b></h4><br>
+
<td> deg<sub>5</sub> </td>
<table border="1">
+
<td> rate of mRox1 degradation </td>
            <tr>
+
</tr>
<th>Part Number</th>
+
<tr>
<th>Description</th>
+
<td> deg<sub>6</sub> </td>
<th>Abbreviation</th>
+
<td> rate of Rox1 degradation </td>
 +
</tr>
 +
<tr>
 +
<td> deg<sub>7</sub> </td>
 +
<td> rate of mSi_Tag degradation </td>
 +
</tr>
 +
<tr>
 +
<td> deg<sub>8</sub> </td>
 +
<td> rate of Si_Tag degradation </td>
 +
</tr>
 +
<tr>
 +
<td> deg<sub>9</sub> </td>
 +
<td> rate of mMcfp-3 degradation </td>
 +
</tr>
 +
<tr>
 +
<td> deg<sub>10</sub> </td>
 +
<td> rate of Mcfp-3 degradation </td>
 +
</tr>
 +
<tr>
 +
<td> K<sub>m1</sub> </td>
 +
<td> apparent association constant for CRY2_BD binding with UAS </td>
 +
</tr>
 +
<tr>
 +
<td> K<sub>m2</sub> </td>
 +
<td> apparent association constant for CIB1_AD binding with CRY2_BD </td>
 +
</tr>
 +
<tr>
 +
<td> K<sub>m3</sub> </td>
 +
<td> apparent association constant for Rxo1 binding with promoter panb1 </td>
 +
</tr>
 +
<tr>
 +
<td> V<sub>max</sub> </td>
 +
<td> maximum transcription rate of promoter pAnb1 without the repression of protein Rox1 </td>
 +
</tr>
 +
<tr>
 +
<td> τ<sub>1</sub> </td>
 +
<td> time for AD activating promoter pGal1 </td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td><a href="http://parts.igem.org/Part:BBa_K1592004">BBa_K1592004</a></td>
+
<td> τ<sub>2</sub> </td>
<td>promoter hp4d</td>
+
<td> time for Rox1 binding with promoter panb1 </td>
<td>Php4d</td>
+
 
</tr>
 
</tr>
 
</table>
 
</table>
<p>Promoter hp4d is a recombinant promotor which can strongly promote gene expression in any culture medium. The gene promoted by Php4d usually expresses at the early stage of stabilization</p>
 
  
        <p><b>Improved part</b></p>
+
            More detailed parameters table of DDEs model can be downloaded <a href="https://static.igem.org/mediawiki/2015/f/ff/Parameter_table%281%29.zip"><b>here.</b></a>
<table border="1">
+
            <tr>
+
<th>Part Number</th>
+
<th>Description</th>
+
<th>Abbreviation</th>
+
</tr>
+
<tr>
+
<td><a href="http://parts.igem.org/Part:BBa_K1592020">BBa_K1592020</a></td>
+
<td>Ptrp mutant1</td>
+
<td>Ptrp1</td>
+
</tr>
+
<tr>
+
<td><a href="http://parts.igem.org/Part:BBa_K1592021">BBa_K1592021</a></td>
+
<td>Ptrp mutant2</td>
+
<td>Ptrp2</td>
+
</tr>
+
<tr>
+
<td><a href="http://parts.igem.org/Part:BBa_K1592022">BBa_K1592022</a></td>
+
<td>Ptrp mutant3</td>
+
<td>Ptrp3</td>
+
</tr>
+
</table>
+
  
        <p>Ptrp is a promoter with trp operator. It will be repressed by trpR and LovTAP.
+
</div>
<br>We improved BBa_K191007, remove the illegal sites without affecting its function by site-directed mutagenesis for meeting the requirements of RFC10. Finally we constructed three ptrp mutant, called Ptrp mutant1, Ptrp mutant2, and Ptrp mutant3.
+
<div align="center" class="description"><a name="2"></a><br>
</p>
+
    <div class="dongxi"></div>
<p>(These promoters didn’t really applied to our project, for they were our reserve choices)</p>
+
        <h2 style="color:black" align="left"><b>Part one: The Darkness Induction System</b></h2><br>
    </div>
+
          <p>First of all, we intended to simulate the whole pathway to approximate the final expression rate of target proteins as well as the property of the darkness induction system. To achieve this, we need to translate our biological processes to chemical reactions and finally represent it with mathematical equations. </p>
 +
<p>The Darkness Induction System pathway contains the following reactions:</p>
 +
<br><br><br>
  
 +
        <h3 style="color:black" align="left"><b>Formulary</b></h3><br>
 +
          <p>1. Generation of active CIB1_AD</p>
 +
          <img style="width:600px" src="https://static.igem.org/mediawiki/2015/7/70/HUST_Formulary1.png">
 +
          <h4 style="float:right;">(1.1)</h4><br>
 +
          <p>2. Generation of active CRY2_BD</p>
 +
          <img style="width:600px" src="https://static.igem.org/mediawiki/2015/4/41/HUST-Formulary2.png">
 +
            <h4 style="float:right;">(1.2)</h4><br>
 +
          <p>3. Activation of promoter Anb1</p>
 +
          <img style="width:600px" src="https://static.igem.org/mediawiki/2015/9/9e/HUST-Formulary3.png">
 +
              <h4 style="float:right;">(1.3)</h4><br>
 +
       
 +
        <br><br><br>
 +
        <p>The corresponding DDEs of darkness induction system are listed below:</p>
 +
        <p>1. Generation of CIB1_AD</p>
 +
        <img src="https://static.igem.org/mediawiki/2015/7/71/Cm1.png">
 +
<h4 style="float:right;">(1.4)</h4><br>
 +
        <img src="https://static.igem.org/mediawiki/2015/5/55/Cm2.png">
 +
<h4 style="float:right;">(1.5)</h4><br>
 +
        <img src="https://static.igem.org/mediawiki/2015/d/da/Cm3.png">
 +
<h4 style="float:right;">(1.6)</h4><br>
 +
        <p>2. Generation of CRY2_BD</p>
 +
        <img src="https://static.igem.org/mediawiki/2015/a/ac/Cm4.png">
 +
<h4 style="float:right;">(1.7)</h4><br>
 +
        <img src="https://static.igem.org/mediawiki/2015/3/3c/Cm5.png">
 +
<h4 style="float:right;">(1.8)</h4><br>
 +
        <img src="https://static.igem.org/mediawiki/2015/0/01/Cm6.png">
 +
<h4 style="float:right;">(1.9)</h4><br>
 +
        <p>3. Activation of promoter Anb1</p>
 +
        <img src="https://static.igem.org/mediawiki/2015/9/91/Cm7.png">
 +
<h4 style="float:right;">(1.10)</h4><br>
 +
        <p>If exposed to light</p>
 +
        <img src="https://static.igem.org/mediawiki/2015/f/f8/Cm8.png">
 +
<h4 style="float:right;">(1.11)</h4><br>
 +
        <p>Elseif in darkness</p>
 +
        <img src="https://static.igem.org/mediawiki/2015/8/82/Cm9.png">
 +
<h4 style="float:right;">(1.12)</h4><br>
 +
       
 +
            <br><br><br>
 +
 +
            <h3 style="color:black" align="left"><b>Results</b></h3><br>
 +
          <p>Before the circuit was determined, there were two kinds of darkness induction system for choice: the CRY2-CIB1 system and the PhyA-FHL system. To find out the system that suits our circuit better, we simulated both of them with the DDEs model. </p>
 +
<div>
 +
            <img class="picture" src="https://static.igem.org/mediawiki/2015/8/8e/HUST-result1.png"><br>
 +
            <div style="font-size:14px;margin-bottom:30px" align="center">Figure 1.1: Simulation of PhyA-FHL system</div>
 +
          </div>
  
<div class="description"><a name="2"></a><br>
+
<div>
<div class="dongxi"></div>
+
            <img class="picture" src="https://static.igem.org/mediawiki/2015/6/65/HUST-result2.png"><br>
<h2 style="color:black" align="left"><b>Composite part</b></h2>
+
            <div style="font-size:14px;margin-bottom:30px" align="center">Figure 1.2: Simulation of CRY2-CIB1 system</div>
  <table border="1">
+
          </div>
            <tr>
+
         
<th>Part Number</th>
+
 
<th>Description</th>
+
 
</tr>
+
          <p>We can safely derive the following conclusions from the figures above.<br>
<tr>
+
- The photoactive subjects are of low concentration but they remain at a certain level.<br>
<td><a href="http://parts.igem.org/Part:BBa_K1592018">BBa_K1592018</a></td>
+
- Compared to the PhyA-FHL system, the CRY2-CIB1 system is more sensitive to light exposure (The peak of CRY2-CIB1 system appears earlier than the one of PhyA-FHL system) and the PhyA-FHL system has a time-lag for photoactivation. <br>
<td>Pgal1+rox1+cyc1_terminator</td>
+
- The rate of Rox1 degradation in CRY2-CIB1 system is higher than the one in PhyA-FHL system, which means the darkness induction could shut down quickly so that the downstream systems could be activated.<br>
</tr>
+
Hence, we considered CRY2-CIB1 system more advantageous and applied it to our project.<br>
<tr>
+
</p>
<td><a href="http://parts.igem.org/Part:BBa_K1592019">BBa_K1592019</a></td>
+
</div>
<td>Panb1+XPR2 pre-Mcfp3</td>
+
 
</tr>
+
 
<tr>
+
 
<td><a href="http://parts.igem.org/Part:BBa_K1592023">BBa_K1592023</a></td>
+
<div align="center" class="description"><a name="3"></a><br>
<td>Ptrp mutant1+RBS+GFP</td>
+
    <div class="dongxi"></div>
</tr>
+
        <h2 style="color:black" align="left"><b>Part two: The Surface Display System of Si-tag</b></h2><br>
<tr>
+
        <p>With the simulation of Darkness Induction System above, we are able to determine when the Surface Display System of Si-tag would be activated. However, to predict whether Si-tag would be sufficient in the end and to provide essential parameters for the next model, we need to simulate the Surface Display System of Si-tag. </p>
<td><a href="http://parts.igem.org/Part:BBa_K1592024">BBa_K1592024</a></td>
+
<br><br><br>
<td>Ptrp mutant2+RBS+GFP</td>
+
 
</tr>
+
        <h3 style="color:black" align="left"><b>Formulary</b></h3><br>
<tr>
+
          <img class="picture" src="https://static.igem.org/mediawiki/2015/c/c9/HUST-Formulary4.png">
<td><a href="http://parts.igem.org/Part:BBa_K1592025">BBa_K1592025</a></td>
+
<h4 style="float:right;">(1.13)</h4><br>        
<td>Ptrp mutant3+RBS+GFP</td>
+
       
</tr>
+
        <p>The corresponding DDEs of Surface Display System of Si-tag are listed below:</p>
 +
          <img  src="https://static.igem.org/mediawiki/2015/a/ad/HUST_gongshi3.png"><br>
 +
 
 +
 
 +
        <h3 style="color:black" align="left"><b>Results</b></h3><br>
 +
          <p>With the DDEs model we built, we could run the simulation of the expression of Si-tag and determine its amount at any time. To test the function of our darkness induction system, the timeline would be set as darkness-light-darkness.</p>
 +
<div>
 +
            <img class="picture" src="https://static.igem.org/mediawiki/2015/3/39/HUST-result3.png"><br>
 +
            <div style="font-size:14px;margin-bottom:30px" align="center">Figure 2: Simulation of Surface Display System of Si-tag</div>
 +
          </div>
 +
 
 +
          <p>From figure 2, we can see that the Si-tag remains at a low concentration and the Displayed Si-tag accumulates very efficiently when Euk.Cement is in darkness for the first time (0-200min). However, when exposed to light (200-500min), the expression of Si-tag is blocked and the rate of Displayed Si-tag accumulation decreases greatly. After light exposure (500-1500min), the expression of Si-tag and the rate of Displayed Si-tag accumulation gradually recover. Generally speaking, the darkness induction system is capable of controlling the downstream system and the expression of Si-tag is sufficient.
 +
</p>
 +
</div>
 +
 
 +
<div align="center" class="description"><a name="4"></a><br>
 +
    <div class="dongxi"></div>
 +
        <h2 style="color:black" align="left"><b>Part three: The Expression of Mcfp-3</b></h2><br>
 +
        <p>Besides Si-tag, Mcfp-3 is another important product that we must quantify its amount. It’s promoter is the same with the promoter of Si-tag and therefore, we could easily simulate it with the DDEs model and MATLAB.</p>
 +
<br><br><br>
 +
        <h3 style="color:black" align="left"><b>Formulary</b></h3><br>
 +
          <img class="picture" src="https://static.igem.org/mediawiki/2015/a/a4/HUST-Formulary5.png">
 +
<h4 style="float:right;">(1.19)</h4><br>
 +
          <p>The corresponding DDEs of the expression of Mcfp-3 are listed below</p>
 +
          <img src="https://static.igem.org/mediawiki/2015/2/29/Cm16.png">
 +
<h4 style="float:right;">(1.20)</h4><br>
 +
          <img src="https://static.igem.org/mediawiki/2015/6/63/Cm17.png">
 +
<h4 style="float:right;">(1.21)</h4><br>
 +
          <img src="https://static.igem.org/mediawiki/2015/e/ea/Cm18.png">
 +
<h4 style="float:right;">(1.22)</h4><br>
 +
 
 +
          <h3 style="color:black" align="left"><b>Results</b></h3><br>
 +
          <p>To test the darkness induction system again as well as to quantify the amount of Mcfp-3, we set the same timeline with that of Si-tag and run the simulation with MATLAB.</p>
 +
<div>
 +
            <img class="picture" src="https://static.igem.org/mediawiki/2015/7/73/HUST-result4.png"><br>
 +
            <div style="font-size:14px;margin-bottom:30px" align="center">Figure 3: Simulation of the expression of Mcfp-3</div>
 +
          </div>
 +
         
 +
          <p>As we can see in figure 3, the amount of Mcfp-3 was approximately twice as Si-tag. Besides, the darkness induction system took effect again. At 200 minutes when the light is turned off, the slope of Si-tag and Mcfp-3 decrease significantly. After 500 minutes when the light is turned on, the slope of these two substances gradually increase again.</p>
 +
          <br><br><br>
 +
          <h3 style="color:black" align="left"><b>Conclusions</b></h3><br>
 +
          <p>With our DDEs model, we can safely conclude that: <br>
 +
- Our darkness induction system could switch efficiently from darkness to light to shut down the downstream systems. However, it takes some time to switch back from light to darkness. <br>
 +
- Our strains could produce sufficient Si-tag as well as Mcfp-3 to do the job.<br>
 +
- We can quantify the amount of Si-tag and Mcfp-3 at any time so that we can move on to the next model with these data.<br>
 +
</p>
 +
        <br><br><br>
 +
</div>
 +
 
 +
<div align="center" class="description"><a name="5"></a><br>
 +
    <div class="dongxi"></div>
 +
<h2 style="color:black" align="left"><b>Robustness and Parameter Sensitivity Analysis</b></h2><br>
 +
          <p>Considering there are some parameters whose value is uncertain and may have effect on our model, we used numerical solutions to analyze the robustness and parameter sensitivity of our DDEs model.
 +
</p>
 +
<br><br><br>
 +
<h3 style="color:black" align="left"><b>τ1 &τ2</b></h3><br>
 +
          <p>Since τ1 and τ2 are variables that we could not determine their accurate values (0.1-3min), we run the DDEs model with different values ofτ1 and τ2 to find out what effect they have on our DDEs model.
 +
</p>
 +
<table border="1">
 +
            <tr>
 +
<th>Parameters</th>
 +
<th colspan="4">Values of each figure</th>
 +
</tr>
 +
<tr>
 +
<td>τ1</a></td>
 +
<td>0.1</td>
 +
<td>3</td>
 +
<td>0.1</td>
 +
<td>3</td>
 +
</tr>
 +
<tr>
 +
<td>τ2</a></td>
 +
<td>0.1</td>
 +
<td>0.1</td>
 +
<td>3</td>
 +
<td>3</td>
 +
</tr>
 
</table>
 
</table>
+
<div>
 +
            <img class="picture" src="https://static.igem.org/mediawiki/2015/5/52/HUST-result5.png"><br>
 +
            <div style="font-size:14px;margin-bottom:30px" align="center">Figure 4.1: Simulation with τ1 = 0.1min &τ2 =0.1min</div>
 +
          </div>
 +
<div>
 +
            <img class="picture" src="https://static.igem.org/mediawiki/2015/4/43/HUST-result6.png"><br>
 +
            <div style="font-size:14px;margin-bottom:30px" align="center">Figure 4.2: Simulation with τ1 = 3min &τ2 =0.1min</div>
 +
          </div>
 +
<div>
 +
            <img class="picture" src="https://static.igem.org/mediawiki/2015/c/cc/HUST-result7.png"><br>
 +
            <div style="font-size:14px;margin-bottom:30px" align="center">Figure 4.3: Simulation with τ1 = 0.1min &τ2 =3min</div>
 +
          </div>
 +
<div>
 +
            <img class="picture" src="https://static.igem.org/mediawiki/2015/2/22/HUST-result8.png"><br>
 +
            <div style="font-size:14px;margin-bottom:30px" align="center">Figure 4.4: Simulation with τ1 = 3min &τ2 =3min</div>
 +
          </div>
  
<!--图片-->
+
        <h3 style="color:black" align="left"><b>Results</b></h3><br>
<div>
+
          <p>Apparently, even the max value of τ1 and τ2 couldn’t produce noticeable time-lag for the whole system, because the time-lag produced byτ1 and τ2 is approximately 5 minutes while the whole simulation process has the timeline of 1.5 thousands minutes. Therefore, we can conclude that our DDEs model has the robustness of τ1 and τ2 .</p>
    <p>BBa_K1592018</p>
+
<br><br><br>
<img class="picture" src="https://static.igem.org/mediawiki/2015/8/88/HUST_part3.png">
+
</div>
</div>
+
<div>
+
    <p>BBa_K1592018</p>
+
<img class="picture" src="https://static.igem.org/mediawiki/2015/9/90/HUST_part4.png">
+
</div>
+
<div>
+
    <p>BBa_K1592018</p>
+
<img class="picture" src="https://static.igem.org/mediawiki/2015/c/cf/HUST_part5.png">
+
</div>
+
  
+
<div align="center" class="description"><a name="6"></a><br>
 +
    <div class="dongxi"></div>
 +
<h3 style="color:black" align="left"><b>Rate of Basic Transcription for pAnb1:</b></h3><br>
 +
          <p>Since promoter Anb1 has basic transcription rate, Rox1, Si-tag and Mcfp-3 would be expressed even in darkness. Hence, to figure out how it takes effect on our model, we run the simulation with different rate of pAnb1 basic transcription (0.1*Vmax to 0.2*Vmax with step of 0.005*Vmax).</p>
 +
            <a href="#"><img class="picture" style="margin-left:0px" src="https://static.igem.org/mediawiki/2015/4/47/HUST_pAnb1.png" border="0" onMouseOver="this.src='https://static.igem.org/mediawiki/2015/2/26/HUST_pAnb1_gif.gif'" onMouseOut="this.src='https://static.igem.org/mediawiki/2015/4/47/HUST_pAnb1.png'" /></a>
 +
                  <div style="font-size:14px;margin-bottom:30px" align="center">Figure 5: Sensitivity of pAnb1 Basic Transcription <br><h4>(To find expression level change according to basic transcription rate, please put mouse cursor onto figure 5)</h4>
 +
</div>
 +
<br><br><br>
 +
 
 +
<h3 style="color:black" align="left"><b>Results</b></h3><br>
 +
          <p>Our DDEs model is sensitive to the amount of basic transcription of pAnb1. If the rate of pAnb1 basic transcription increases from 0.100*Vmax to 0.200*Vmax, the amount of Rox1 would become 125 percent. Therefore, with less basic transcription of pAnb1, less Rox1 would be expressed and the repressed expression of Si-tag and Mcfp-3 would recover more quickly. We can conclude that our circuit could be improved by reducing the basic transcription of pAnb1.</p>
 +
<br><br><br>
  
 
<!--下一页
 
<!--下一页
Line 564: Line 687:
 
<!--top-->
 
<!--top-->
 
<div class="scroll" id="scroll" style="display:none;"></div>
 
<div class="scroll" id="scroll" style="display:none;"></div>
</div>
+
</div>
 
 
 
 
 
</body>
 
</body>
 
</html>
 
</html>

Latest revision as of 15:49, 18 September 2015

Team:HUST-China:Modeling


click it~


Modeling on Cellular Level


With the benefit of synthetic biology, we built up our kit, Euk.Cement, with some characterized parts to carry out the mission of sand solidification. However, whether our kit will be able to achieve its goal depends on the answers to the following questions.
- Will the darkness induction system be able to switch efficiently to control the expression of target proteins?
- How much Si-tag and Mcfp-3 our strains produce in the end?
- What strategy should we take in practice to make full use of our product?

The answer to these questions will be shown in our modeling as well as the guidance for future wet-lab experiments.

To ensure that Euk.Cement is capable, we built a DDEs (Delay Differential Equations) model based on Michaelis-Menten equation[1] and Chemical reaction rate equation[2], which includes three parts, to get the insight of how each part works cooperatively.

The code of our DDEs model can be downloaded here.


Parameters


The description of parameters, their values[5] and the references involved in this model are listed in a table.

Brief Parameter Table of DDEs Model

Parameter Description
copynumpRMH120 copy number of plasmid pRMH120
copynumpZS3 copy number of plasmid pZS3
trc1 rate of mCRY2_BD transcription
trc2 rate of mCIB1_AD transcription
trc3 rate of mRox1 transcription
trc4 rate of mRox1 basic transcription
trl1 rate of CRY2_BD translation
trl2 rate of CIB1_AD translation
trl3 rate of Rox1 translation
trl4 rate of Si_Tag translation
trl5 rate of Mcfp-3 translation
trf1 rate of photoactivation of CRY2_BD
trf-1 rate of photoinactivation of CRY2_BD
trf2 rate of photoactivation of CIB1_AD
trf-2 rate of photoinactivation of CIB1_AD
trlc1 translocation rate of Si_Tag to membrane
trlc2 translocation rate of Mcfp-3 to extracellular
deg1 rate of mCRY2_BD degradation
deg2 rate of CRY2_BD degradation
deg3 rate of mCIB1_AD degradation
deg4 rate of CIB1_AD degradation
deg5 rate of mRox1 degradation
deg6 rate of Rox1 degradation
deg7 rate of mSi_Tag degradation
deg8 rate of Si_Tag degradation
deg9 rate of mMcfp-3 degradation
deg10 rate of Mcfp-3 degradation
Km1 apparent association constant for CRY2_BD binding with UAS
Km2 apparent association constant for CIB1_AD binding with CRY2_BD
Km3 apparent association constant for Rxo1 binding with promoter panb1
Vmax maximum transcription rate of promoter pAnb1 without the repression of protein Rox1
τ1 time for AD activating promoter pGal1
τ2 time for Rox1 binding with promoter panb1
More detailed parameters table of DDEs model can be downloaded here.

Part one: The Darkness Induction System


First of all, we intended to simulate the whole pathway to approximate the final expression rate of target proteins as well as the property of the darkness induction system. To achieve this, we need to translate our biological processes to chemical reactions and finally represent it with mathematical equations.

The Darkness Induction System pathway contains the following reactions:




Formulary


1. Generation of active CIB1_AD

(1.1)


2. Generation of active CRY2_BD

(1.2)


3. Activation of promoter Anb1

(1.3)





The corresponding DDEs of darkness induction system are listed below:

1. Generation of CIB1_AD

(1.4)


(1.5)


(1.6)


2. Generation of CRY2_BD

(1.7)


(1.8)


(1.9)


3. Activation of promoter Anb1

(1.10)


If exposed to light

(1.11)


Elseif in darkness

(1.12)





Results


Before the circuit was determined, there were two kinds of darkness induction system for choice: the CRY2-CIB1 system and the PhyA-FHL system. To find out the system that suits our circuit better, we simulated both of them with the DDEs model.


Figure 1.1: Simulation of PhyA-FHL system

Figure 1.2: Simulation of CRY2-CIB1 system

We can safely derive the following conclusions from the figures above.
- The photoactive subjects are of low concentration but they remain at a certain level.
- Compared to the PhyA-FHL system, the CRY2-CIB1 system is more sensitive to light exposure (The peak of CRY2-CIB1 system appears earlier than the one of PhyA-FHL system) and the PhyA-FHL system has a time-lag for photoactivation.
- The rate of Rox1 degradation in CRY2-CIB1 system is higher than the one in PhyA-FHL system, which means the darkness induction could shut down quickly so that the downstream systems could be activated.
Hence, we considered CRY2-CIB1 system more advantageous and applied it to our project.


Part two: The Surface Display System of Si-tag


With the simulation of Darkness Induction System above, we are able to determine when the Surface Display System of Si-tag would be activated. However, to predict whether Si-tag would be sufficient in the end and to provide essential parameters for the next model, we need to simulate the Surface Display System of Si-tag.




Formulary


(1.13)


The corresponding DDEs of Surface Display System of Si-tag are listed below:


Results


With the DDEs model we built, we could run the simulation of the expression of Si-tag and determine its amount at any time. To test the function of our darkness induction system, the timeline would be set as darkness-light-darkness.


Figure 2: Simulation of Surface Display System of Si-tag

From figure 2, we can see that the Si-tag remains at a low concentration and the Displayed Si-tag accumulates very efficiently when Euk.Cement is in darkness for the first time (0-200min). However, when exposed to light (200-500min), the expression of Si-tag is blocked and the rate of Displayed Si-tag accumulation decreases greatly. After light exposure (500-1500min), the expression of Si-tag and the rate of Displayed Si-tag accumulation gradually recover. Generally speaking, the darkness induction system is capable of controlling the downstream system and the expression of Si-tag is sufficient.


Part three: The Expression of Mcfp-3


Besides Si-tag, Mcfp-3 is another important product that we must quantify its amount. It’s promoter is the same with the promoter of Si-tag and therefore, we could easily simulate it with the DDEs model and MATLAB.




Formulary


(1.19)


The corresponding DDEs of the expression of Mcfp-3 are listed below

(1.20)


(1.21)


(1.22)


Results


To test the darkness induction system again as well as to quantify the amount of Mcfp-3, we set the same timeline with that of Si-tag and run the simulation with MATLAB.


Figure 3: Simulation of the expression of Mcfp-3

As we can see in figure 3, the amount of Mcfp-3 was approximately twice as Si-tag. Besides, the darkness induction system took effect again. At 200 minutes when the light is turned off, the slope of Si-tag and Mcfp-3 decrease significantly. After 500 minutes when the light is turned on, the slope of these two substances gradually increase again.




Conclusions


With our DDEs model, we can safely conclude that:
- Our darkness induction system could switch efficiently from darkness to light to shut down the downstream systems. However, it takes some time to switch back from light to darkness.
- Our strains could produce sufficient Si-tag as well as Mcfp-3 to do the job.
- We can quantify the amount of Si-tag and Mcfp-3 at any time so that we can move on to the next model with these data.





Robustness and Parameter Sensitivity Analysis


Considering there are some parameters whose value is uncertain and may have effect on our model, we used numerical solutions to analyze the robustness and parameter sensitivity of our DDEs model.




τ1 &τ2


Since τ1 and τ2 are variables that we could not determine their accurate values (0.1-3min), we run the DDEs model with different values ofτ1 and τ2 to find out what effect they have on our DDEs model.

Parameters Values of each figure
τ1 0.1 3 0.1 3
τ2 0.1 0.1 3 3

Figure 4.1: Simulation with τ1 = 0.1min &τ2 =0.1min

Figure 4.2: Simulation with τ1 = 3min &τ2 =0.1min

Figure 4.3: Simulation with τ1 = 0.1min &τ2 =3min

Figure 4.4: Simulation with τ1 = 3min &τ2 =3min

Results


Apparently, even the max value of τ1 and τ2 couldn’t produce noticeable time-lag for the whole system, because the time-lag produced byτ1 and τ2 is approximately 5 minutes while the whole simulation process has the timeline of 1.5 thousands minutes. Therefore, we can conclude that our DDEs model has the robustness of τ1 and τ2 .





Rate of Basic Transcription for pAnb1:


Since promoter Anb1 has basic transcription rate, Rox1, Si-tag and Mcfp-3 would be expressed even in darkness. Hence, to figure out how it takes effect on our model, we run the simulation with different rate of pAnb1 basic transcription (0.1*Vmax to 0.2*Vmax with step of 0.005*Vmax).

Figure 5: Sensitivity of pAnb1 Basic Transcription

(To find expression level change according to basic transcription rate, please put mouse cursor onto figure 5)




Results


Our DDEs model is sensitive to the amount of basic transcription of pAnb1. If the rate of pAnb1 basic transcription increases from 0.100*Vmax to 0.200*Vmax, the amount of Rox1 would become 125 percent. Therefore, with less basic transcription of pAnb1, less Rox1 would be expressed and the repressed expression of Si-tag and Mcfp-3 would recover more quickly. We can conclude that our circuit could be improved by reducing the basic transcription of pAnb1.